Publication

Maternal GABAergic and GnRH/corazonin pathway modulates egg diapause phenotype of the silkwormBombyx mori

Diapause represents a major developmental switch in insects and is a seasonal adaptation that evolved as a specific subtype of dormancy in most insect species to ensure survival under unfavorable environmental conditions and synchronize populations. However, the hierarchical relationship of the molecular mechanisms involved in the perception of environmental signals to integration in morphological, physiological, behavioral, and reproductive responses remains unclear. In the bivoltine strain of the silkwormBombyx mori, embryonic diapause is induced transgenerationally as a maternal effect.

Embryonic Microglia Interact with Hypothalamic Radial Glia during Development and Upregulate the TAM Receptors MERTK and AXL following an Insult

Despite a growing appreciation for microglial influences on the developing brain, the responsiveness of microglia to insults during gestation remains less well characterized, especially in the embryo when microglia themselves are still maturing. Here, we asked if fetal microglia could coordinate an innate immune response to an exogenous insult. Using time-lapse imaging, we showed that hypothalamic microglia actively surveyed their environment by near-constant "touching" of radial glia projections.

Spatiotemporal analysis of human intestinal development at single-cell resolution

Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut.

Deficiency of Cathelicidin-related Antimicrobial Peptide Promotes Skin Papillomatosis in Mus musculus Papillomavirus 1-infected Mice

Cathelicidins have been reported to inhibit human papillomavirus infection in vitro; however, nothing is known about their activity in vivo. In this study, experimental skin infection with Mus musculus papillomavirus 1 resulted in robust development of cutaneous papillomas in cyclosporine A-treated C57BL/6J mice deficient for the murine cathelicidin-related antimicrobial peptide (CRAMP), in contrast to wild-type controls.

Social isolation uncovers a circuit underlying context-dependent territory-covering micturition

The release of urine, or micturition, serves a fundamental physiological function and, in many species, is critical for social communication. In mice, the pattern of urine release is modulated by external and internal factors and transmitted to the spinal cord via the pontine micturition center (PMC). Here, we exploited a behavioral paradigm in which mice, depending on strain, social experience, and sensory context, either vigorously cover an arena with small urine spots or deposit urine in a few isolated large spots.

CDKL5 deficiency in forebrain glutamatergic neurons results in recurrent spontaneous seizures

Mutations of the cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders characterized by intractable epilepsy, intellectual disability, and autism. Multiple mouse models generated for mechanistic studies have exhibited phenotypes similar to some human pathological features, but none of the models has developed one of the major symptoms affecting CDKL5 deficiency disorder (CDD) patients: intractable recurrent seizures.

Expression of NR5A2, NUP153, HNF4A, USP15 and FNDC3B is consistent with their use as novel biomarkers for bovine mammary stem/progenitor cells

Mammary stem cells (MaSC) are essential for growth and maintenance of mammary epithelium. Previous studies have utilized morphological characteristics or retention of bromodeoxyuridine (BrdU) label to identify MaSC and progenitor cells, these approaches may not be feasible or may not identify all resident stem cells. Alternatively, these special cells may be identified by assessing protein and mRNA expression of appropriate markers. The focus of this study was to assess the staining patterns and in situ quantification of novel candidate markers for bovine MaSC/progenitor cells.

Zinc Dependent Regulation of ZEB1 and YAP1 Co-activation Promotes EMT Plasticity and Metastasis in Pancreatic Cancer

Pancreatic cancer is characterized by extensive metastasis. EMT plasticity plays a critical role in tumor progression and metastasis by maintaining the transition between EMT and MET states. Our aim is to understand the molecular events regulating metastasis and EMT plasticity in pancreatic cancer.

Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes

Astrocytes are glial cells that are abundant in the central nervous system (CNS) and that have important homeostatic and disease-promoting functions1. However, little is known about the homeostatic anti-inflammatory activities of astrocytes and their regulation. Here, using high-throughput flow cytometry screening, single-cell RNA sequencing and CRISPR-Cas9-based cell-specific in vivo genetic perturbations in mice, we identify a subset of astrocytes that expresses the lysosomal protein LAMP12 and the death receptor ligand TRAIL3.

LncRNA DANCR represses Doxorubicin-induced apoptosis through stabilizing MALAT1 expression in colorectal cancer cells

Long non-coding RNA (lncRNA) DANCR has been reported to participate in key processes such as stem cell differentiation and tumorigenesis. In a high throughput screening for lncRNAs involved in Doxorubicin-induced apoptosis, we found DANCR was suppressed by Doxorubicin and it acted as an important repressor of apoptosis in colorectal cancer. Further studies demonstrated that DANCR promoted the oncogenic lncRNA MALAT1 expression via enhancing the RNA stability of MALAT1 to suppress apoptosis. MALAT1 could efficiently mediate the suppressive function of DANCR on apoptosis.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com