Publication

A Modular Organization of LRR Protein-Mediated Synaptic Adhesion Defines Synapse Identity

Pyramidal neurons express rich repertoires of leucine-rich repeat (LRR)-containing adhesion molecules with similar synaptogenic activity in culture. The in vivo relevance of this molecular diversity is unclear. We show that hippocampal CA1 pyramidal neurons express multiple synaptogenic LRR proteins that differentially distribute to the major excitatory inputs on their apical dendrites.

Single-cell analysis of early progenitor cells that build coronary arteries

Arteries and veins are specified by antagonistic transcriptional programs. However, during development and regeneration, new arteries can arise from pre-existing veins through a poorly understood process of cell fate conversion. Here, using single-cell RNA sequencing and mouse genetics, we show that vein cells of the developing heart undergo an early cell fate switch to create a pre-artery population that subsequently builds coronary arteries.

In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration

Abstract

BACKGROUND & AIMS:

Inflammation affects regeneration of the intestinal epithelia; long noncoding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation.

METHODS:

Class 4 Semaphorins and Plexin-B receptors regulate GABAergic and glutamatergic synapse development in the mammalian hippocampus

To understand how proper circuit formation and function is established in the mammalian brain, it is necessary to define the genes and signaling pathways that instruct excitatory and inhibitory synapse development.

Dual leucine zipper kinase is required for mechanical allodynia and microgliosis after nerve injury.

Neuropathic pain resulting from nerve injury can become persistent and difficult to treat but the molecular signaling responsible for its development remains poorly described.

Integrated Human Evaluation of the Lysophosphatidic Acid Pathway as a Novel Therapeutic Target in Atherosclerosis

Variants in the PLPP3 gene encoding for lipid phosphate phosphohydrolase 3 have been associated with susceptibility to atherosclerosis independently of classical risk factors. PLPP3 inactivates lysophosphatidic acid (LPA), a pro-inflammatory, pro-thrombotic product of phospholipase activity. Here we performed the first exploratory analysis of PLPP3, LPA, and LPA receptors (LPARs 1–6) in human atherosclerosis.

The human motor neuron axonal transcriptome is enriched for transcripts related to mitochondrial function and microtubule-based axonal transport

Local axonal translation of specific mRNA species plays an important role in axon maintenance, plasticity during development and recovery from injury. Recently, disrupted axonal mRNA transport and translation have been linked to neurodegenerative disorders.

Detection of AR-V7 transcript with RNA in situ hybridization in human salivary duct cancer

The androgen receptor (AR) is a nuclear steroid receptor that binds to testosterone and dihydrotestosterone and regulates the transcription of genes leading to cell growth, differentiation and survival. AR serves as an important oncogenic signal in prostate cancers and apocrine breast cancers. Salivary duct carcinoma (SDC) is a rare subtype of head and neck cancer that is defined by an apocrine phenotype, with AR positivity by immunohistochemistry (IHC) in up to 98% of cases [1].

Redistribution of Mature Smooth Muscle Markers in Brain Arteries in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy.

Vascular smooth muscle cells (SMCs) undergo a series of dramatic changes in CADASIL, the most common inherited cause of vascular dementia and stroke. NOTCH3 protein accumulates and aggregates early in CADASIL, followed by loss of mature SMCs from the media of brain arteries and marked intimal proliferation.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com