Publication

Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ

Cancer is characterized by pervasive epigenetic alterations with enhancer dysfunction orchestrating the aberrant cancer transcriptional programs and transcriptional dependencies. Here, we epigenetically characterize human colorectal cancer (CRC) using de novo chromatin state discovery on a library of different patient-derived organoids. By exploring this resource, we unveil a tumor-specific deregulated enhancerome that is cancer cell-intrinsic and independent of interpatient heterogeneity.

RAC1B modulates intestinal tumourigenesis via modulation of WNT and EGFR signalling pathways

Current therapeutic options for treating colorectal cancer have little clinical efficacy and acquired resistance during treatment is common, even following patient stratification. Understanding the mechanisms that promote therapy resistance may lead to the development of novel therapeutic options that complement existing treatments and improve patient outcome. Here, we identify RAC1B as an important mediator of colorectal tumourigenesis and a potential target for enhancing the efficacy of EGFR inhibitor treatment.

Hepatic stellate cell as a Mac-2-binding protein-producing cell in patients with liver fibrosis

Mac-2 binding protein (M2BP) glycosylated isomer (M2BPGi) is a serum marker of liver fibrosis; M2BPGi is a glycosylated form of M2BP. Hepatocytes and hepatic stellate cells (HSCs) have been studied to determine the source of M2BP. This study proposes to identify the origin of M2BP in fibrotic liver. Using liver fibrosis tissue specimens from 15 patients with liver cancer, M2BP mRNA and M2BP were detected by in situ hybridization and immunohistochemistry, respectively. The expression levels of M2BP mRNA were evaluated with scores of 3, 2, and 1.

AAV9-mediated FIG4 delivery prolongs life span in Charcot Marie Tooth disease type 4J mouse model

Charcot-Marie-Tooth disease type 4J (CMT4J) is caused by recessive, loss-of-function mutations in FIG4, encoding a phosphoinositol(3,5)P2-phosphatase. CMT4J patients have both neuron loss and demyelination in the peripheral nervous system, with vacuolization indicative of endosome/lysosome trafficking defects. Although the disease is highly variable, the onset is often in childhood and FIG4 mutations can dramatically shorten lifespan. There is currently no treatment for CMT4J. Here we present the results of preclinical studies testing a gene therapy approach to restore FIG4 expression.

The persistent pain transcriptome: identification of cells and molecules activated by hyperalgesia

During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models.

Long-term functional alterations following prenatal GLP-1R activation

Evidence supporting the use of glucagon-like peptide-1 (GLP-1) analogues to pharmacologically treat disorders beyond type 2 diabetes and obesity is increasing. However, little is known about how activation of the GLP-1 receptor (GLP-1R) during pregnancy affects maternal and offspring outcomes. We treated female C57Bl/6 J mice prior to conception and throughout gestation with a long-lasting GLP-1R agonist, Exendin-4.

Primary Cutaneous Monomorphic Post-transplant Lymphoproliferative Disorder Mimicking Squamous Cell Carcinoma In Situ

Post-transplant lymphoproliferative disorder (PTLD) is a term used to describe a range of lymphoproliferative disorders that occur after solid organ transplant. Although the clinical presentation is variable, primary cutaneous PTLD typically presents as isolated nodules that appear as dermal-based proliferations. We present a case of a 70-year-old woman with a history of a kidney transplant who presented with a 2-month history of an asymptomatic, erythematous plaque on the right shin, clinically suspected to be squamous cell carcinoma in situ.

Mapping the expression of transient receptor potential channels across murine placental development

Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal-fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded.

The melanocortin-3 receptor is a pharmacological target for the regulation of anorexia

Ablation of hypothalamic AgRP (Agouti-related protein) neurons is known to lead to fatal anorexia, whereas their activation stimulates voracious feeding and suppresses other motivational states including fear and anxiety. Despite the critical role of AgRP neurons in bidirectionally controlling feeding, there are currently no therapeutics available specifically targeting this circuitry. The melanocortin-3 receptor (MC3R) is expressed in multiple brain regions and exhibits sexual dimorphism of expression in some of those regions in both mice and humans.

Fgf15 neurons of the dorsomedial hypothalamus control glucagon secretion and hepatic gluconeogenesis

The counterregulatory response to hypoglycemia is an essential survival function. It is controlled by an integrated network of glucose responsive neurons, which trigger endogenous glucose production to restore normoglycemia. The complexity of this gluco-regulatory network is, however, only partly characterized. In a genetic screen of a panel of recombinant inbred mice we previously identified Fgf15, expressed in neurons of the dorsomedial hypothalamus, as a negative regulator of glucagon secretion.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com