Publication

Amplification of the Melanocortin-1 Receptor in Nephrotic Syndrome Identifies a Target for Podocyte Cytoskeleton Stabilization.

The melanocortin-1 receptor (MC1R) in podocytes has been suggested as the mediator of the ACTH renoprotective effect in patients with nephrotic syndrome with the mechanism of action beeing stabilization of the podocyte actin cytoskeleton. To understand how melanocortin receptors are regulated in nephrotic syndrome and how they are involved in restoration of filtration barrier function, melanocortin receptor expression was evaluated in patients and a rat model of nephrotic syndrome in combination with cell culture analysis.

Long non-coding RNA-dependent mechanism to regulate heme biosynthesis and erythrocyte development.

In addition to serving as a prosthetic group for enzymes and a hemoglobin structural component, heme is a crucial homeostatic regulator of erythroid cell development and function. While lncRNAs modulate diverse physiological and pathological cellular processes, their involvement in heme-dependent mechanisms is largely unexplored. In this study, we elucidated a lncRNA (UCA1)-mediated mechanism that regulates heme metabolism in human erythroid cells. We discovered that UCA1 expression is dynamically regulated during human erythroid maturation, with a maximal expression in proerythroblasts.

Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth.

Abstract
BACKGROUND:
Amphiregulin (AREG), a ligand of the epidermal growth factor receptor, is not only essential for proper mammary ductal development, but also associated with breast cancer proliferation and growth. In the absence of AREG, mammary ductal growth is stunted and fails to expand. Furthermore, suppression of AREG expression in estrogen receptor-positive breast tumor cells inhibits in-vitro and in-vivo growth.

Discordant roles for FGF ligands in lung branching morphogenesis between human and mouse.

Fibroblast Growth Factor (FGF) signaling plays an important role in lung organogenesis. Over recent decades, FGF signaling in lung development has been extensively studied in animal models. However, little is known about the expression, localization and functional roles of FGF ligands during human fetal lung development. Therefore, we aimed to determine the expression and function of several FGF ligands and receptors in human lung development. Using in situ hybridization (ISH) and RNA-sequencing, we assessed their expression and distribution in native human fetal lung.

Comprehensive analysis of Long non-coding RNA expression in dorsal root ganglion reveals cell type specificity and dysregulation following nerve injury.

Dorsal root ganglion (DRG) neurons provide connectivity between peripheral tissues and spinal cord. Transcriptional plasticity within DRG sensory neurons after peripheral nerve injury contributes to nerve repair but also leads to maladaptive plasticity, including the development of neuropathic pain. This study presents tissue and neuron specific expression profiling of both known and novel Long Non-Coding RNAs (LncRNAs) in rodent DRG following nerve injury.

Identification of HER2 Immunohistochemistry-Negative, FISH-Amplified Breast Cancers and Their Response to Anti-HER2 Neoadjuvant Chemotherapy.

OBJECTIVES:
Either immunohistochemistry (IHC) or in situ hybridization (ISH) can be used to determine human epidermal growth factor receptor 2 (HER2) status. Breast cancers (BCs) with HER2 IHC-negative (IHC-) and ISH-amplified (ISH+) results have been rarely reported but not well studied. We investigated the frequency of HER2 IHC-/ISH+ BCs and their response to anti-HER2 neoadjuvant chemotherapy (NAC).

METHODS:
Seventeen BCs with HER2 IHC-/ISH+ results were identified from 1,107 consecutive invasive BCs (1.5%, 17/1,107).

Follicle sinus complexes (FSCs) in muzzle skin as postmortem diagnostic material of rabid dogs.

Recently, we reported that follicle-sinus complexes (FSCs) in the muzzle skin are useful for postmortem diagnosis of rabid dogs. Here, we compared the sensitivity and specificity of detecting the viral antigen in the brain and FSCs of 226 suspected rabid dogs, and assessed whether the FSC harbored the virus genome and particles. The viral antigen was detected in 211 of 226 samples with 100% sensitivity and specificity. Viral RNA and particles were observed in the cytoplasm of Merkel cells (MCs).

The mucinous domain of pancreatic carboxyl-ester lipase (CEL) contains core 1/core 2 O-glycans that can be modified by ABO blood group determinants.

Carboxyl-ester lipase (CEL) is a pancreatic fat-digesting enzyme associated with human disease. Rare mutations in the CEL gene cause a syndrome of pancreatic exocrine and endocrine dysfunction denoted MODY8, whereas a recombined CEL allele increases the risk for chronic pancreatitis. Moreover, CEL has been linked to pancreatic ductal adenocarcinoma (PDAC) through a postulated oncofetal CEL variant termed feto-acinar pancreatic protein (FAPP). The monoclonal antibody mAb16D10 was previously reported to detect a glycotope in the highly O-glycosylated, mucin-like C-terminus of CEL/FAPP.

30 Years of Neuroendocrinology: technological advances pave the way for molecular discovery.

Since the 1950's (1) the systems level interactions between the hypothalamus, pituitary and end organs such as the adrenal, thyroid and gonads have been well known, however it is only over the last three decades that advances in molecular biology and information technology have provided a tremendous expansion of knowledge at the molecular level.

Immune-Mediated Systemic Vasculitis as the Proposed Cause of Sudden-Onset Sensorineural Hearing Loss following Lassa Virus Exposure in Cynomolgus Macaques.

Lassa virus (LASV) causes a severe, often fatal hemorrhagic disease in regions in Africa where the disease is endemic, and approximately 30% of patients develop sudden-onset sensorineural hearing loss after recovering from acute disease. The causal mechanism of hearing loss in LASV-infected patients remains elusive. Here, we report findings after closely examining the chronic disease experienced by surviving macaques assigned to LASV exposure control groups in two different studies.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com