Publication

The developing murine lung is susceptible to acetaminophen toxicity

Acetaminophen (N-acetyl-p-aminophenol, APAP) use in the neonatal intensive care unit is rapidly increasing. While APAP-related hepatotoxicity is rarely reported in the neonatal literature, other end-organ toxicity can occur with toxic exposures. APAP-induced lung injury has been reported with toxic exposures in adults, but whether this occurs in the developing lung is unknown. Therefore, we tested whether toxic APAP exposures would injure the developing lung.

Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH

Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology.

Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection

Gene expression analysis of individual cells enables characterization of heterogeneous and rare cell populations, yet widespread implementation of existing single-cell gene analysis techniques has been hindered due to limitations in scale, ease, and cost. Here, we present a novel microdroplet-based, one-step reverse-transcriptase polymerase chain reaction (RT-PCR) platform and demonstrate the detection of three targets simultaneously in over 100,000 single cells in a single experiment with a rapid read-out.

REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity

Systemic insulin sensitivity shows a diurnal rhythm with a peak upon waking1,2. The molecular mechanism that underlies this temporal pattern is unclear. Here we show that the nuclear receptors REV-ERB-α and REV-ERB-β (referred to here as 'REV-ERB') in the GABAergic (γ-aminobutyric acid-producing) neurons in the suprachiasmatic nucleus (SCN) (SCNGABA neurons) control the diurnal rhythm of insulin-mediated suppression of hepatic glucose production in mice, without affecting diurnal eating or locomotor behaviours during regular light-dark cycles.

SARS-CoV-2 infection induces protective immunity and limits transmission in Syrian hamsters

A critical question in understanding the immunity to SARS-COV-2 is whether recovered patients are protected against re-challenge and transmission upon second exposure. We developed a Syrian hamster model in which intranasal inoculation of just 100 TCID50 virus caused viral pneumonia. Aged hamsters developed more severe disease and even succumbed to SARS-CoV-2 infection, representing the first lethal model using genetically unmodified laboratory animals.

BMP pathway antagonism by Grem1 regulates epithelial cell fate in intestinal regeneration

Background and aims In homeostasis, intestinal cell fate is controlled by balanced gradients of morphogen signalling. The Bone Morphogenetic Protein (BMP) pathway has a physiological, pro-differentiation role, predominantly inferred through previous experimental pathway inactivation. Intestinal regeneration is underpinned by dedifferentiation and cell plasticity, but the signalling pathways that regulate this adaptive reprogramming are not well understood.

The ciliary protein intraflagellar transport 88 is required for the maturation, homeostasis and mechanoadaptation of articular cartilage

Purpose: The integration of external cues, such as mechanics, with intrinsic cell signalling programmes, such as hedgehog (Hh) signalling, is crucial for the development, maturation and homeostasis of articular cartilage. Activation of Hh signalling in adulthood and pathophysiological mechanics, have both been associated with the development of murine and human OA. But, how chondrocytes might transduce and integrate these cues remains unknown.

Is the ciliary protein intraflagellar transport 88 a dampener of mechanical cues in adolescent epiphyseal plate closure?

Purpose: As skeletal maturity is approached, long bone elongation draws to a close and the cartilaginous growth plate (GP) ossifies and fuses as bone bridges form. This is likely a pivotal moment for the appendicular skeleton, but our mechanistic appreciation of how this process is orchestrated is limited.

ROC Analysis of p16 Expression in Cell Blocks of Metastatic Head and Neck Squamous Cell Carcinoma

Background Oropharyngeal squamous cell carcinoma is associated with human papillomavirus (HPV) and often presents with early metastasis to cervical neck lymph nodes which are amenable to fine needle aspiration (FNA). The most common method of HPV status determination is p16 immunohistochemistry (IHC). The literature suggests that a lower threshold is needed for p16 positivity on cell block. We examined and quantified p16 IHC staining on cell block and used ROC curve analysis to determine an optimal cut off value with high sensitivity and specificity.

Japanese encephalitis virus manipulates lysosomes membrane for RNA replication and utilizes autophagy components for intracellular growth

Japanese encephalitis virus is absolutely dependent on their host cells and has evolved various strategies to manipulate the cellular secretory pathways for viral replication. However, how cellular secretory pathways are hijacked, and the origin of the viral vesicles remains elusive during JEV replication. Here we show how JEV manipulates multiple components of the cellular secretory pathway, including autophagic machinery, to generate a superior environment for genome replication.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com