Publication

Histopathology and SARS-CoV-2 Cellular Localization in Eye Tissues of COVID-19 Autopsies

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy.

Local tissue mechanics control cardiac pacemaker cell embryonic patterning

Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a "soft" macromolecular ECM that specifically encapsulates CPCs.

Myeloid-specific deletion of activating transcription factor 6 alpha increases CD11b+ macrophage subpopulations and aggravates lung fibrosis

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. The accumulation of macrophages is associated with disease pathogenesis. The unfolded protein response (UPR) has been linked to macrophage activation in pulmonary fibrosis. To date, the impact of activating transcription factor 6 alpha (ATF6α), one of the UPR mediators, on the composition and function of pulmonary macrophage subpopulations during lung injury and fibrogenesis is not fully understood.

FGF18 promotes human lung branching morphogenesis through regulating mesenchymal progenitor cells

Fibroblast growth factor (FGF) signaling is known to play an important role in lung organogenesis. However, we recently demonstrated that FGF10 fails to induce branching in human fetal lungs as is observed in mouse. Our previous human fetal lung RNA sequencing data exhibited increased FGF18 during the pseudoglandular stage of development, suggestive of its importance in human lung branching morphogenesis. Whereas it has been previously reported that FGF18 is critical during alveologenesis, few studies have described its implication in lung branching, specifically in human.

A Pro-inflammatory Long Noncoding RNA Lncenc1 Regulates Inflammasome Activation in Macrophage

Mammalian genomes encode thousands of long non-coding RNAs (lncRNAs). LncRNAs are extensively expressed in various immune cells. The lncRNAs have been reported to be involved in diverse biological processes, including the regulation of gene expression, dosage compensation, and genomic imprinting. However, very little research has been conducted to explore how they alter innate immune responses during host-pathogen interactions.

Steroidogenic factor 1 protects mice from obesity-induced glucose intolerance via improving glucose-stimulated insulin secretion by beta cells

As a potential druggable nuclear receptor, steroidogenic factor 1 (SF1) regulates obesity and insulin resistance in the ventromedial hypothalamic nucleus. Herein, we sought to demonstrate its expression and functions in islets in the development of obesity-induced diabetes. SF1 was barely detected in the beta cells of lean mice but highly expressed in those of non-diabetic obese mice, while decreased in diabetic ones. Conditional deletion of SF1 in beta cells predisposed diet-induced obese (DIO) mice to glucose intolerance by perturbing glucose-stimulated insulin secretion (GSIS).

Loss of Fgf9 in mice leads to pancreatic hypoplasia and asplenia

Pancreatic development requires spatially and temporally controlled expression of growth factors derived from mesenchyme. Here, we report that in mice the secreted factor Fgf9 is expressed principally by mesenchyme and then mesothelium during early development, then subsequently by both mesothelium and rare epithelial cells by E12.5 and onwards. Global knockout of the Fgf9 gene resulted in the reduction of pancreas and stomach size, as well as complete asplenia. The number of early Pdx1+ pancreatic progenitors was reduced at E10.5, as was proliferation of mesenchyme at E11.5.

PPAR Pan Agonist MHY2013 Alleviates Renal Fibrosis in a Mouse Model by Reducing Fibroblast Activation and Epithelial Inflammation

The peroxisome proliferator-activated receptor (PPAR) nuclear receptor has been an interesting target for the treatment of chronic diseases. Although the efficacy of PPAR pan agonists in several metabolic diseases has been well studied, the effect of PPAR pan agonists on kidney fibrosis development has not been demonstrated. To evaluate the effect of the PPAR pan agonist MHY2013, a folic acid (FA)-induced in vivo kidney fibrosis model was used. MHY2013 treatment significantly controlled decline in kidney function, tubule dilation, and FA-induced kidney damage.

BMPER Improves Vascular Remodeling and the Contractile Vascular SMC Phenotype

Dedifferentiated vascular smooth muscle cells (vSMCs) play an essential role in neointima formation, and we now aim to investigate the role of the bone morphogenetic protein (BMP) modulator BMPER (BMP endothelial cell precursor-derived regulator) in neointima formation. To assess BMPER expression in arterial restenosis, we used a mouse carotid ligation model with perivascular cuff placement. Overall BMPER expression after vessel injury was increased; however, expression in the tunica media was decreased compared to untreated control.

Gut Region-Specific Interleukin 1β Induction in Different Myenteric Neuronal Subpopulations of Type 1 Diabetic Rats

Interleukin 1β (IL1β) is a pro-inflammatory cytokine that may play a crucial role in enteric neuroinflammation in type 1 diabetes. Therefore, our goal is to evaluate the effects of chronic hyperglycemia and insulin treatment on IL1β immunoreactivity in myenteric neurons and their different subpopulations along the duodenum-ileum-colon axis. Fluorescent immunohistochemistry was used to count IL1β expressing neurons as well as the neuronal nitric oxide synthase (nNOS)- and calcitonin gene-related peptide (CGRP)-immunoreactive myenteric neurons within this group.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com