Publication

Cell selectivity in succinate receptor SUCNR1/GPR91 signaling in skeletal muscle

Succinate is released by skeletal muscle during exercise and activates SUCNR1/GPR91. Signaling of SUCNR1 is involved in metabolite-sensing paracrine communication in skeletal muscle during exercise. However, the specific cell types responding to succinate and the directionality of communication are unclear. We aim to characterize the expression of SUCNR1 in human skeletal muscle. De novo analysis of transcriptomic datasets demonstrated that SUCNR1 mRNA is expressed in immune, adipose, and liver tissues, but scarce in skeletal muscle.

Bafilomycin A1 inhibits SARS-CoV-2 infection in a human lung xenograft mouse model

Coronavirus disease 2019 is a global pandemic caused by SARS-CoV-2. The emergence of its variant strains has posed a considerable challenge to clinical treatment. Therefore, drugs capable of inhibiting SARS-CoV-2 infection, regardless of virus variations, are in urgently need. Our results showed that the endosomal acidification inhibitor, Bafilomycin A1 (Baf-A1), had an inhibitory effect on the viral RNA synthesis of SARS-CoV-2, and its Beta and Delta variants at the concentration of 500 nM.

Therapeutic Hypothermia Inhibits Hypoxia-Induced Cardiomyocyte Apoptosis Via the MiR-483-3p/Cdk9 Axis

Background Therapeutic hypothermia has a beneficial effect on cardiac function after acute myocardial infarction, but the exact mechanism is still unclear. Recent research has suggested that microRNAs participate in acute myocardial infarction to regulate cardiomyocyte survival. This study aimed to explore the ability of hypothermia-regulated microRNA-483-3p (miR-483-3p) to inhibit hypoxia-induced myocardial infarction.

Liver development during Xenopus tropicalis metamorphosis is controlled by T3-activation of WNT signaling.

Thyroid hormone (T3) regulates vertebrate organ development, growth, and metabolism through T3 receptor (TR). Due to maternal influence in mammals, it has been difficult to study if and how T3 regulates liver development. Liver remodeling during anuran metamorphosis resembles liver maturation in mammals and is controlled by T3. We generated Xenopus tropicalis animals with both TRα and TRβ genes knocked out and found that TR double knockout liver had developmental defects such as reduced cell proliferation and failure to undergo hepatocyte hypertrophy or activate urea cycle gene expression.

Evaluation of the Antiseizure Activity of Endemic Plant Halfordia kendack Guillaumin and Its Main Constituent, Halfordin, on a Zebrafish Pentylenetetrazole (PTZ)-Induced Seizure Model

Epilepsy is a neurological disease that burdens over 50 million people worldwide. Despite the considerable number of available antiseizure medications, it is estimated that around 30% of patients still do not respond to available treatment. Herbal medicines represent a promising source of new antiseizure drugs. This study aimed to identify new drug lead candidates with antiseizure activity from endemic plants of New Caledonia.

Aquaporin-4 Expression Switches from White to Gray Matter Regions during Postnatal Development of the Central Nervous System

Aquaporin-4 (AQP4) is the most abundant water channel in the central nervous system and plays a fundamental role in maintaining water homeostasis there. In adult mice, AQP4 is located mainly in ependymal cells, in the endfeet of perivascular astrocytes, and in the glia limitans. Meanwhile, its expression, location, and function throughout postnatal development remain largely unknown.

Positive Linear Relationship between Nucleophosmin Protein Expression and the Viral Load in HPV-Associated Oropharyngeal Squamous Cell Carcinoma: A Possible Tool for Stratification of Patients

Most oropharyngeal squamous cell carcinomas (OPSCCs) are human papillomavirus (HPV)-associated, high-risk (HR) cancers that show a better response to chemoradiotherapy and are associated with improved survival. Nucleophosmin (NPM, also called NPM1/B23) is a nucleolar phosphoprotein that plays different roles within the cell, such as ribosomal synthesis, cell cycle regulation, DNA damage repair and centrosome duplication. NPM is also known as an activator of inflammatory pathways.

Human Papillomavirus Genome Copy Number Is Maintained by S-Phase Amplification, Genome Loss to the Cytosol during Mitosis, and Degradation in G1 Phase

The current model of human papillomavirus (HPV) replication is comprised of three modes of replication. Following infectious delivery, the viral genome is amplified during the establishment phase to reach up to some hundred copies per cell. The HPV genome copy number remains constant during the maintenance stage. The differentiation of infected cells induces HPV genome amplification.

Enhanced Expression of a Novel Lamin A/C Splice Variant in IPF Lung

In idiopathic pulmonary fibrosis (IPF), the normal delicate lung architecture is replaced with rigid extracellular matrix (ECM) due to accumulation of activated myofibroblasts and excessive deposition of ECM. Lamins have a role in fostering mechanosignaling from the ECM to the nucleus. Although there is a growing number of studies on lamins and associated diseases, there are no prior reports linking aberrations in lamins with pulmonary fibrosis.

RSV-induced expanded ciliated cells contribute to bronchial wall thickening

Viral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis). This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com