Publication

The Orexigenic Force of Olfactory Palatable Food Cues in Rats

Environmental cues recalling palatable foods motivate eating beyond metabolic need, yet the timing of this response and whether it can develop towards a less palatable but readily available food remain elusive. Increasing evidence indicates that external stimuli in the olfactory modality communicate with the major hub in the feeding neurocircuitry, namely the hypothalamic arcuate nucleus (Arc), but the neural substrates involved have been only partially uncovered.

Transient acquisition of cross-species infectivity during the evolution of SARS-CoV-2

Laboratory mice are susceptible to infection with the SARS-CoV-2 501Y.V2 variant. (A) Body weight changes in nine-month-old female BALB/c mice infected intranasally with 501Y.V2 or IME-BJ05 at a dose of 1.2 × 104 pfu per mouse. _n_ = 5. (B) Tissue distribution of SARS-CoV-2 sgRNA. Each tissue and serum sample was subjected to viral sgRNA copy analysis by real-time qPCR. The dotted lines denote the detection limit (_n_ = 3). (C) ISH assay for viral RNA in lung tissues from mice infected with 501Y.V2 or treated with PBS (mock) on day 3 post infection. Positive signals are shown in brown.

Tick-Borne Encephalitis Virus (TBEV) Infection in Two Horses

A final diagnosis in a horse with clinical signs of encephalopathy can be challenging despite the use of extensive diagnostics. Clinical signs are often not pathognomonic and need to be interpreted in combination with (specific) laboratory results and epidemiological data of the geographical region of the origin of the case(s).

Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network

Circadian rhythms in mammals are governed by the hypothalamic suprachiasmatic nucleus (SCN), in which 20,000 clock cells are connected together into a powerful time-keeping network. In the absence of network-level cellular interactions, the SCN fails as a clock. The topology and specific roles of its distinct cell populations (nodes) that direct network functions are, however, not understood.

Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance

Following injury, cells in regenerative tissues have the ability to regrow. The mechanisms whereby regenerating cells adapt to injury-induced stress conditions and activate the regenerative program remain to be defined. Here, using the mammalian neonatal heart regeneration model, we show that Nrf1, a stress-responsive transcription factor encoded by the Nuclear Factor Erythroid 2 Like 1 (Nfe2l1) gene, is activated in regenerating cardiomyocytes. Genetic deletion of Nrf1 prevented regenerating cardiomyocytes from activating a transcriptional program required for heart regeneration.

Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice

Microglia are brain-resident immune cells with a repertoire of functions in the brain. However, the extent of their interactions with the vasculature and potential regulation of vascular physiology has been insufficiently explored. Here, we document interactions between ramified CX3CR1 + myeloid cell somata and brain capillaries. We confirm that these cells are bona fide microglia by molecular, morphological and ultrastructural approaches.

SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration

SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue.

TDP-43 mediates SREBF2-regulated gene expression required for oligodendrocyte myelination

Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR.

ADAR and hnRNPC deficiency synergize in activating endogenous dsRNA-induced type I IFN responses

Cytosolic double-stranded RNA (dsRNA) initiates type I IFN responses. Endogenous retroelements, notably Alu elements, constitute a source of dsRNA. Adenosine-to-inosine (A-to-I) editing by ADAR induces mismatches in dsRNA and prevents recognition by MDA5 and autoinflammation. To identify additional endogenous dsRNA checkpoints, we conducted a candidate screen in THP-1 monocytes and found that hnRNPC and ADAR deficiency resulted in synergistic induction of MDA5-dependent IFN responses.

Does SARS-CoV-2 infect cardiomyocytes directly? Yes, it does

Introduction: COVID-19 (Coronavirus disease 2019) appeared in Wuhan, China, at the ending of 2019. The SARS-CoV-2 virus which causes the illness has spread all over the world and caused a pandemic. The first target of the virus is the respiratory tract; however, the COVID-19 may present different types of course. It is known that the SARS-CoV-2 affects multiple organs, including the heart. Cardiac manifestations of COVID-19 include myocarditis, myocardial infarction, heart failure, acute coronar... Morey syndrome, arrhythmia.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com