Publications

Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10.

Leber congenital amaurosis type 10 is a severe retinal dystrophy caused by mutations in the CEP290 gene1,2. We developed EDIT-101, a candidate genome-editing therapeutic, to remove the aberrant splice donor created by the IVS26 mutation in the CEP290 gene and restore normal CEP290 expression. Key to this therapeutic, we identified a pair of Staphylococcus aureus Cas9 guide RNAs that were highly active and specific to the human CEP290 target sequence. In vitro experiments in human cells and retinal explants demonstrated the molecular mechanism of action and nuclease specificity.

Attenuated Replication of Lassa Virus Vaccine Candidate ML29 in STAT-1-/- Mice.

Lassa virus (LASV), a highly prevalent mammalian arenavirus endemic in West Africa, can cause Lassa fever (LF), which is responsible for thousands of deaths annually. LASV is transmitted to humans from naturally infected rodents. At present, there is not an effective vaccine nor treatment. The genetic diversity of LASV is the greatest challenge for vaccine development. The reassortant ML29 carrying the L segment from the nonpathogenic Mopeia virus (MOPV) and the S segment from LASV is a vaccine candidate under current development.

Endothelium-Derived Semaphorin 3G Regulates Hippocampal Synaptic Structure and Plasticity via Neuropilin-2/PlexinA4.

The proper interactions between blood vessels and neurons are critical for maintaining the strength of neural circuits and cognitive function. However, the precise molecular events underlying these interactions remain largely unknown. Here, we report that the selective knockout of semaphorin 3G (Sema3G) in endothelial cells impaired hippocampal-dependent memory and reduced dendritic spine density in CA1 neurons in mice; these effects were reversed after restoration of Sema3G levels in the hippocampus by AAV transfection.

Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities.

Interleukin-1 (IL-1) signaling is important for multiple potentially pathogenic processes in the central nervous system (CNS), but the cell-type-specific roles of IL-1 signaling are unclear. We used a genetic knockin reporter system in mice to track and reciprocally delete or express IL-1 receptor 1 (IL-1R1) in specific cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons.

The T-type Ca2+ Channel Cav3.2 Regulates Differentiation of Neural Progenitor Cells During Cortical Development via Caspase-3.

Here we report that the low voltage dependent T-type calcium (Ca2+) channel Cav3.2, encoded by the CACNA1H gene, regulates neuronal differentiation during early embryonic brain development through activating caspase-3. At the onset of neuronal differentiation, neural progenitor cells exhibited spontaneous Ca2+ activity. This activity strongly correlated with the upregulation of CACNA1H mRNA. Cells exhibiting robust spontaneous Ca2+ signaling had increased caspase-3 activity unrelated to apoptosis.

Disrupting the IL-36 and IL-23/IL-17 loop underlies the efficacy of calcipotriol and corticosteroid therapy for psoriasis.

Psoriasis is one of the most common skin inflammatory diseases worldwide. The vitamin D3 analog calcipotriol has been used alone or in combination with corticosteroids in treating plaque psoriasis, but how it suppresses psoriatic inflammation has not been fully understood. Using an experimental mouse psoriasis model, we show that topical calcipotriol inhibited the pivotal IL-23/IL-17 axis and neutrophil infiltration in psoriatic skin, and interestingly, such effects were mediated through the vitamin D receptor (VDR) in keratinocytes (KCs).

Transcriptional and Physiological Roles for STAT Proteins in Leptin Action.

Abstract
Objectives
Leptin acts via its receptor LepRb on specialized neurons in the brain to modulate food intake, energy expenditure, and body weight. LepRb activates signal transducers and activators of transcription (STATs, including STAT1, STAT3, and STAT5) to control gene expression.

Roles of the HOXA10 gene during castrate-resistant prostate cancer progression.

Homeobox A10 (HOXA10) is an important transcription factor that regulates the development of the prostate gland. However, it remains unknown whether it modulates prostate cancer (PCa) progression into castrate-resistant stages. In this study, we have applied RNA in situ hybridization assays to demonstrate that downregulation of HOXA10 expression is associated with castrate-resistant PCa. These findings are supported by public RNA-seq data showing that reduced HOXA10 expression is correlated with poor patient survival.

PD-L1, RB1 and mismatch repair protein immunohistochemical expression in neuroendocrine carcinoma, small cell type of the uterine cervix.

Abstract
AIM:
Neuroendocrine carcinoma, small cell type of the uterine cervix (SmCC-Cx) is a rare HPV- related tumor with limited therapeutic options. Merkel cell carcinoma, another virus-associated neuroendocrine malignancy, has significant PD-L1 expression rates. PD-L1 expression has been reported in other malignancies of the cervix. We aimed to determine the prevalence of PD-L1 in the context of mismatch repair protein (MMR) and RB1 expression status in SmCC-Cx.

Cost-Efficient and Easy to Perform PCR-Based Assay to Identify Met Exon 14 Skipping in Formalin-Fixed Paraffin-Embedded (FFPE) Non-Small Cell Lung Cancer (NSCLC) Samples.

MET is a receptor tyrosine kinase (RTK) that plays important roles in carcinogenesis. Despite being frequently overexpressed in cancer, clinical responses to targeting this receptor have been limited. Recently novel splicing mutations involving the loss of exon 14 (called METex14 skipping) have emerged as potential biomarkers to predict for responsiveness to targeted therapies with Met inhibitors in non-small cell lung cancer (NSCLC). Currently, the diverse genomic alterations responsible for METex14 skipping pose a challenge for routine clinical diagnostic testing.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com