Publications

Tumour Necrosis Factor-α, Chemokines, and Leukocyte Infiltrate Are Biomarkers for Pathology in the Brains of Venezuelan Equine Encephalitis (VEEV)-Infected Mice

Venezuelan equine encephalitis virus (VEEV) is a disease typically confined to South and Central America, whereby human disease is characterised by a transient systemic infection and occasionally severe encephalitis, which is associated with lethality. Using an established mouse model of VEEV infection, the encephalitic aspects of the disease were analysed to identify biomarkers associated with inflammation. Sequential sampling of lethally challenged mice (infected subcutaneously) confirmed a rapid onset systemic infection with subsequent spread to the brain within 24 h of the challenge.

Conditional Cell Reprogramming and Air-Liquid Interface Modeling Life Cycle of Oncogenic Viruses (HPV and EBV) in Epithelial Cells and Virus-Associated Human Carcinomas

Several oncogenic viruses are associated with approximately 20% of human cancers. Experimental models are crucial for studying the pathogenicity and biological aspects of oncogenic viruses and their potential mechanisms in tumorigenesis. Current cell models have considerable limitations such as: their low yield, genetic and epigenetic modification, and reduction in tumor heterogeneity during long propagation.

The Roles of the 5' and 3' Untranslated Regions in Human Astrovirus Replication

Astroviruses are small nonenveloped single-stranded RNA viruses with a positive sense genome. They are known to cause gastrointestinal disease in a broad spectrum of species. Although astroviruses are distributed worldwide, a gap in knowledge of their biology and disease pathogenesis persists. Many positive-sense single-stranded RNA viruses show conserved and functionally important structures in their 5' and 3' untranslated regions (UTRs). However, not much is known about the role of the 5' and 3' UTRs in the viral replication of HAstV-1.

Divergent functions of histone acetyltransferases KAT2A and KAT2B in keratinocyte self-renewal and differentiation

The mammalian epidermis undergoes constant renewal, replenished by a pool of stem cells and terminal differentiation of their progeny. This is accompanied by changes in gene expression and morphology that are orchestrated, in part, by epigenetic modifiers. Here, we define the role of the histone acetyltransferase KAT2A in epidermal homeostasis and provide a comparative analysis that reveals key functional divergence with its paralog KAT2B. In contrast to the reported function of KAT2B in epidermal differentiation, KAT2A supports the undifferentiated state in keratinocytes.

What is happening to immunohistochemistry?

Immunohistochemistry is a commonly used technique in research and pathology laboratories worldwide. However, in recent years, there has been a significant decrease in the number of Pubmed entries using the term immunohistochemistry. This decline can be attributed to two factors: increased awareness of the issue of unreliable research antibodies and the availability of novel RNA in situ hybridization techniques. Using the example of immunohistochemistry, this text discusses the factors that can affect good laboratory and publishing practices, or their lack thereof.

Protease-Activated Receptor 2 (PAR2) expressed in sensory neurons contributes to signs of pain and neuropathy in paclitaxel treated mice

Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common, dose-limiting side effect of cancer therapy. Protease-activated receptor 2 (PAR2) is implicated in a variety of pathologies, including CIPN. In this study, we demonstrate the role of PAR2 expressed in sensory neurons in a paclitaxel (PTX)-induced model of CIPN in mice. PAR2 knockout/WT mice and mice with PAR2 ablated in sensory neurons were treated with paclitaxel administered via intraperitoneal injection. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale.

Tumor-derived proliferative CTCs and CTC clusters predict aggressiveness and early recurrence in hepatocellular carcinoma patients

Circulating tumor cells (CTCs), an indispensable liquid biopsy classifier, can provide extra information for the diagnosis and prognosis of hepatocellular carcinoma (HCC).We systematically analyzed the peripheral blood of preoperative HCC patients (n = 270) for CTC number, Ki67 index reflecting the proliferative CTC percentage (PCP), and CTC clusters correlated with the characteristics of malignant HCC tumors.Driver gene mutations were found with high levels of consistency between CTCs and primary tumors (n = 73).

Isoflurane rapidly modifies synaptic and cytoskeletal phosphoproteomes of the supraoptic nucleus of the hypothalamus and the cortex

Despite the widespread use of general anaesthetics, the mechanisms mediating their effects are still not understood. Although suppressed in most parts of the brain, neuronal activity, as measured by FOS activation, is increased in the hypothalamic supraoptic nucleus (SON) by numerous general anaesthetics, and evidence points to this brain region being involved in the induction of general anaesthesia and natural sleep.

Effects of high incubation temperature on tight junction proteins in the yolk sac and small intestine of embryonic broilers

During the transition from incubation to hatch, the chicks shift from obtaining nutrients from the yolk sac to the intestine. The yolk sac tissue (YST) and small intestine serve as biological barriers between the yolk or gut contents and the blood circulation. These barriers must maintain structural integrity for optimal nutrient uptake as well as protection from pathogens.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com