Publications

Vector genome loss and epigenetic modifications mediate decline in transgene expression of AAV5 vectors produced in mammalian and insect cells

Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 1013 vg/kg of vector, and blood and liver samples were collected through week 57. For all vectors, peak expression (weeks 12-24) declined by 50% to week 57.

Pooled genetic screens with image-based profiling

Spatial structure in biology, spanning molecular, organellular, cellular, tissue, and organismal scales, is encoded through a combination of genetic and epigenetic factors in individual cells. Microscopy remains the most direct approach to exploring the intricate spatial complexity defining biological systems and the structured dynamic responses of these systems to perturbations.

Hippo-Yap Signaling Maintains Sinoatrial Node Homeostasis

The sinoatrial node (SAN) functions as the pacemaker of the heart, initiating rhythmic heartbeats. Despite its importance, the SAN is one of the most poorly understood cardiac entities because of its small size and complex composition and function. The Hippo signaling pathway is a molecular signaling pathway fundamental to heart development and regeneration.

Neuronal signal-regulatory protein alpha drives microglial phagocytosis by limiting microglial interaction with CD47 in the retina

Microglia utilize their phagocytic activity to prune redundant synapses and refine neural circuits during precise developmental periods. However, the neuronal signals that control this phagocytic clockwork remain largely undefined. Here, we show that neuronal signal-regulatory protein alpha (SIRPα) is a permissive cue for microglial phagocytosis in the developing murine retina. Removal of neuronal, but not microglial, SIRPα reduced microglial phagocytosis, increased synpase numbers, and impaired circuit function.

High Diagnostic Accuracy of Epigenetic Imprinting Biomarkers in Thyroid Nodules

To explore the novel diagnostic value of epigenetic imprinting biomarkers in thyroid nodules.A total of 550 patients with fine-needle aspiration (FNA)-evaluated and histopathologically confirmed thyroid nodules were consecutively recruited from eight medical centers. Quantitative chromogenic imprinted gene in situ hybridization (QCIGISH) was used to assess the allelic expression of imprinted genes SNRPN and HM13, on the basis of which a diagnostic grading model for thyroid nodules was developed.

Platr4 is an early embryonic lncRNA that exerts its function downstream on cardiogenic mesodermal lineage commitment

The mammalian genome encodes thousands of long non-coding RNAs (lncRNAs), many of which are developmentally regulated and differentially expressed across tissues, suggesting their potential roles in cellular differentiation. Despite this expression pattern, little is known about how lncRNAs influence lineage commitment at the molecular level. Here, we demonstrate that perturbation of an embryonic stem cell/early embryonic lncRNA, pluripotency-associated transcript 4 (Platr4), directly influences the specification of cardiac-mesoderm-lineage differentiation.

Essential role of MESP1-RING1A complex in cardiac differentiation

Heart development is controlled by a complex transcriptional network composed of transcription factors and epigenetic regulators. Mutations in key developmental transcription factor MESP1 and chromatin factors, such as PRC1 and cohesin components, have been found in human congenital heart diseases (CHDs), although their functional mechanism during heart development remains elusive. Here, we find that MESP1 interacts with RING1A/RING1, the core component of PRC1.

Intestinal Apc-inactivation induces HSP25 dependency

The majority of colorectal cancers (CRCs) present with early mutations in tumor suppressor gene APC. APC mutations result in oncogenic activation of the Wnt pathway, which is associated with hyperproliferation, cytoskeletal remodeling, and a global increase in mRNA translation. To compensate for the increased biosynthetic demand, cancer cells critically depend on protein chaperones to maintain proteostasis, although their function in CRC remains largely unexplored.

Hierarchical deployment of Tbx3 dictates the identity of hypothalamic KNDy neurons to control puberty onset

The neuroendocrine system consists of a heterogeneous collection of neuropeptidergic neurons in the brain, among which hypothalamic KNDy neurons represent an indispensable cell subtype controlling puberty onset. Although neural progenitors and neuronal precursors along the cell lineage hierarchy adopt a cascade diversification strategy to generate hypothalamic neuronal heterogeneity, the cellular logic operating within the lineage to specify a subtype of neuroendocrine neurons remains unclear.

Clustering of vomeronasal receptor genes is required for transcriptional stability but not for choice

Rodents perceive pheromones via vomeronasal receptors encoded by highly evolutionarily dynamic Vr and Fpr gene superfamilies. We report here that high numbers of V1r pseudogenes are scattered in mammalian genomes, contrasting with the clustered organization of functional V1r and Fpr genes. We also found that V1r pseudogenes are more likely to be expressed when located in a functional V1r gene cluster than when isolated.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com