Publications

The contribution of brain banks to knowledge discovery in amyotrophic lateral sclerosis: A systematic review

Over the past decade, considerable efforts have been made to accelerate pathophysiological understanding of fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) with brain banks at the forefront. In addition to exploratory disease mechanisms, brain banks have aided our understanding with regard to clinical diagnosis, genetics and cell biology. Across neurodegenerative disorders, the impact of brain tissue in ALS research has yet to be quantified.

Single-cell sequencing reveals novel cellular heterogeneity in uterine leiomyomas

What are the cellular composition and single-cell transcriptomic differences between myometrium and leiomyomas as defined by single-cell RNA sequencing?We discovered cellular heterogeneity in smooth muscle cells (SMCs), fibroblast and endothelial cell populations in both myometrium and leiomyoma tissues.Previous studies have shown the presence of SMCs, fibroblasts, endothelial cells and immune cells in myometrium and leiomyomas.

Molecular identification of spatially distinct anabolic responses to mechanical loading in murine cortical bone

Osteoporosis affects over 200 million women worldwide, one third of whom are predicted to suffer from an osteoporotic fracture in their lifetime. The most promising anabolic drugs involve administration of expensive antibodies. Because mechanical loading stimulates bone formation, our current data, using a mouse model, replicates the anabolic effects of loading in humans and may identify novel pathways amenable to oral treatment.

Chemical Effects on Breast Development, Function, and Cancer Risk: Existing Knowledge and New Opportunities

Population studies show worrisome trends towards earlier breast development, difficulty in breastfeeding, and increasing rates of breast cancer in young women. Multiple epidemiological studies have linked these outcomes with chemical exposures, and experimental studies have shown that many of these chemicals generate similar effects in rodents, often by disrupting hormonal regulation.

Lentiviral Vectors for Ocular Gene Therapy

This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed.

Adult re-expression of IRSp53 rescues NMDA receptor function and social behavior in IRSp53-mutant mice

IRSp53 (or BAIAP2) is an abundant excitatory postsynaptic scaffolding/adaptor protein that is involved in actin regulation and has been implicated in autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. IRSp53 deletion in mice leads to enhanced NMDA receptor (NMDAR) function and social deficits that are responsive to NMDAR inhibition. However, it remains unclear whether IRSp53 re-expression in the adult IRSp53-mutant mouse brain after the completion of brain development could reverse these synaptic and behavioral dysfunctions.

Passive Immunization with a Single Monoclonal Neutralizing Antibody Protects against Cutaneous and Mucosal Mouse Papillomavirus Infections

We have established a mouse papillomavirus (MmuPV1) model that induces both cutaneous and mucosal infections and cancers. In the current study, we use this model to test our hypothesis that passive immunization using a single neutralizing monoclonal antibody can protect both cutaneous and mucosal sites at different time points after viral inoculation. We conducted a series of experiments involving the administration of either a neutralizing monoclonal antibody, MPV.A4, or control monoclonal antibodies to both outbred and inbred athymic mice.

Characterization of Macrophage-Tropic HIV-1 Infection of Central Nervous System Cells and the Influence of Inflammation

HIV-1 infection within the central nervous system (CNS) includes evolution of the virus, damaging inflammatory cascades, and the involvement of multiple cell types; however, our understanding of how Env tropism and inflammation can influence CNS infectivity is incomplete. In this study, we utilize macrophage-tropic and T cell-tropic HIV-1 Env proteins to establish accurate infection profiles for multiple CNS cells under basal and interferon alpha (IFN-α) or lipopolysaccharide (LPS)-induced inflammatory states.

Downregulation of the Long Noncoding RNA IALNCR Targeting MAPK8/JNK1 Promotes Apoptosis and Antagonizes Bovine Viral Diarrhea Virus Replication in Host Cells

Bovine viral diarrhea virus (BVDV) is the causative agent of the bovine viral diarrhea-mucosal disease, which is a leading cause of economic losses in the cattle industry worldwide. To date, many underlying mechanisms involved in BVDV-host interactions remain unclear, especially the functions of long noncoding RNAs (lncRNAs).

Discovery and Validation of Clinically Relevant Long Non-Coding RNAs in Colorectal Cancer

Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with nearly two million newly diagnosed cases each year. The survival of patients with CRC greatly depends on the cancer stage at the time of diagnosis, with worse prognosis for more advanced cases. Consequently, considerable effort has been directed towards improving population screening programs for early diagnosis and identifying prognostic markers that can better inform treatment strategies.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com