Publications

The Inhibitory Effect and Mechanism of Ferula akitschkensis Volatile Oil on Gastric Cancer

Ferula akitschkensis volatile oil (FAVO) has a good inhibitory activity on gastric cancer cell proliferation, but the mechanism of action is not yet clear. In this study, we tested the antigastric cancer efficacy and mechanism of FAVO using both in vivo and in vitro models. The results showed that FAVO effectively inhibited the proliferation, migration, and invasion of human gastric cancer SGC-7901 cells, the formation of small tubules of human umbilical vein endothelial cells as well as zebrafish intersegmental vessel and intestinal vein angiogenesis.

Novel DNA-based in situ hybridization method to detect Desmozoon lepeophtherii in Atlantic salmon tissues

The microsporidian Desmozoon lepeophtherii Freeman and Sommerville, 2009 is considered significant in the pathogenesis of gill disease in Atlantic salmon (Salmo salar Linnaeus, 1758). Due to the difficulty in detecting D. lepeophtherii in tissue sections, infections are normally diagnosed by molecular methods, routine haematoxylin and eosin (H&E) stained gill tissue sections and the use of other histochemical stains and labels to confirm the presence of spores. An in situ hybridization (ISH) protocol specific for D. lepeophtherii was developed using DIG-labelled oligonucleotide probes.

Vertical transmission of attaching and invasive E. coli from the dam to neonatal mice predisposes to more severe colitis following exposure to a colitic insult later in life

The gastrointestinal microbiota begins to be acquired at birth and continually matures through early adolescence. Despite the relevance for gut health, few studies have evaluated the impact of pathobiont colonization of neonates on the severity of colitis later in life. LF82 is an adherent invasive E. coli strain associated with ileal Crohn's disease. The aim of this study was to evaluate the severity of dextran sodium sulfate (DSS)-induced colitis in mice following E. coli LF82 colonization. Gnotobiotic mice harboring the altered Schaedler flora (ASF) were used as the model. While E.

Evaluation of TERT mRNA expression using RNAscope™: A potential histopathologic diagnostic and prognostic tool

Telomerase reverse transcriptase (TERT) activation has been shown to be an important cancer hallmark; the activation and expression of TERT has been documented in >90% of tumors and TERT activation has been touted as a prognostic marker in many cancers. However, there is currently no simple testing modality to detect TERT mRNA expression in surgical pathology specimens.

Circular RNA LONP2 regulates proliferation, invasion, and apoptosis of bladder cancer cells by sponging microRNA-584-5p

Bladder cancer (BC) is the most frequent type of urinary tumor and a barely treatable disease. Although extensive efforts have been invested in the research of BC, the underlying etiology and pathophysiology remain unclear. CircLONP2 is a circular RNA implicated in the development of many cancers, and miR-584-5p and YAP1 have been reported to contribute to the progression of BC. In this research, we presented novel evidence supporting circLONP2/miR-584-5p/YAP1 axis as a novel regulatory module in the progression of BC.

circHIPK3 regulates cell proliferation and migration by sponging microRNA-124 and regulating serine/threonine kinase 3 expression in esophageal squamous cell carcinoma

Circular RNAs (circRNAs) are a type of important non-coding RNAs that widely involve in the physiological and pathophysiological process. Recent research has established a link between circHIPK3 and the malignant activity of cancer cells. However, circHIPK3' role in esophageal squamous cell carcinoma (ESCC) still needs more focus. To determine the prognostic value of circHIPK3 in patients with ESCC, the expression of circHIPK3 was quantified in 32 pairs of ESCC using real-time polymerase chain reaction (RT-qPCR).

Single-nucleus RNA sequencing identified cells with ependymal cell-like features enriched in neonatal mice after spinal cord injury

The adult mammalian central nervous system has limited regenerative ability, and spinal cord injury (SCI) often causes lifelong motor disability. While regeneration is limited in adults, injured spinal cord tissue can be regenerated and neural function can be almost completely restored in neonates. However, difference of cellular composition in lesion has not been well characterized. To gain insight into the age-dependent cellular reaction after SCI, we performed single-nucleus RNA sequencing, analyzing 4076 nuclei from sham and injured spinal cords from adult and neonatal mice.

Role of uroguanylin's signalling pathway in the development of ischaemic stroke

Stroke is one of the leading causes of mortality and disability worldwide. By affecting bradykinin function, activation of guanylate cyclase (GC)-A has been shown to have a neuroprotective effect after ischaemic stroke, whereas the same has not been confirmed for GC-B; therefore, we aimed to determine the possible role of GC-C and its agonist, uroguanylin (UGN), in the development of stroke. In this study, middle cerebral artery occlusion (MCAO) was performed on wild-type (WT), GC-C KO and UGN KO mice. MR images were acquired before and 24 h after MCAO.

Unique membranous gastrin receptor expression of parietal cells, and its distribution pattern in the gastric oxyntic mucosa and fundic gland polyps

The aim of this study was to clarify the correlation between gastrin receptor (GR) expression in the gastric oxyntic mucosa and fundic gland polyps (FGPs) and the histological and immunohistochemical findings of the mucosa as well as the history of proton pump inhibitor (PPI) administration. The unique membranous linear positivity of GR in parietal cells was reproducibly observed by immunohistochemistry, which was also validated by immunofluorescence.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com