Publications

Biparatopic nanobodies protect mice from lethal challenge with SARS-CoV-2 variants of concern

The ongoing COVID-19 pandemic and the emergence of new SARS-CoV-2 variants of concern (VOCs) requires continued development of effective therapeutics. Recently, we identified high-affinity neutralizing nanobodies (Nbs) specific for the receptor-binding domain (RBD) of SARS-CoV-2. Taking advantage of detailed epitope mapping, we generate two biparatopic Nbs (bipNbs) targeting a conserved epitope outside and two different epitopes inside the RBD:ACE2 interface.

Analysis of the circRNA and T-UCR populations identifies convergent pathways in mouse and human models of Rett syndrome

Noncoding RNAs play regulatory roles in physiopathology, but their involvement in neurodevelopmental diseases is poorly understood. Rett syndrome is a severe, progressive neurodevelopmental disorder linked to loss-of-function mutations of the MeCP2 gene for which no cure is yet available.

Circular RNA circSmoc1-2 regulates vascular calcification by acting as a miR-874-3p sponge in vascular smooth muscle cells

Vascular calcification (VC), the calcium deposition inside the blood vessels, is common in patients with atherosclerosis, cardiovascular disease, and chronic kidney disease. Although several treatments are available to reduce calcification, the incidence of VC continues to rise. Recently, there have been several reports describing the regulation of circular RNAs (circRNAs) in various diseases. However, the role of circRNAs in VC has not yet been fully explored.

hsa_circ_0005358 suppresses cervical cancer metastasis by interacting with PTBP1 protein to destabilize CDCP1 mRNA

Metastasis is the main cause of cervical cancer lethality, but to date, no effective treatment has been developed to block metastasis. Circular RNAs (circRNAs) were recently found to be involved in cancer metastasis. In this study, we identified a downregulated circRNA derived from the host gene Gli1 (hsa_circ_0005358) in cervical cancer tissues, which was expressed at lower levels in tissues with extracervical metastasis than in those without extracervical metastasis.

Hippocampal neuropathology in suicide: Gaps in our knowledge and opportunities for a breakthrough

Suicide is a major global hazard. There is a need for increasing suicide awareness and effective and evidence-based interventions, targeting both suicidal ideation and conduct. However, anti-suicide pharmacological effects are unsatisfactory. The human hippocampus is vulnerable to neuropsychiatric damages and subsequently releases psychobiological signals. Human hippocampal studies of suicide completers have shown mechanistic changes in neurobiology, which, however, could not reflect the neuropathological 'fingerprints' of fatal suicide ideations and suicide attempts.

Lung directed antibody gene transfer confers protection against SARS-CoV-2 infection

The novel coronavirus disease (COVID-19) pandemic continues to be a worldwide threat and effective antiviral drugs and vaccines are being developed in a joint global effort. However, some elderly and immune-compromised populations are unable to raise an effective immune response against traditional vaccines.

A High-Fat Diet Activates the BAs-FXR Axis and Triggers Cancer-Associated Fibroblast Properties in the Colon

Dietary signals are known to modulate stemness and tumorigenicity of intestinal progenitors; however, the impact of a high-fat diet (HFD) on the intestinal stem cell (ISC) niche and its association with colorectal cancer remains unclear. Thus, we aimed to investigate how a HFD affects the ISC niche and its regulatory factors.Mice were fed a purified diet (PD) or HFD for 2 months. The expression levels of ISC-related markers, ISC-supportive signals, and Wnt2b were assessed with real-time quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence staining.

Hippocampal BMP signaling as a common pathway for antidepressant action

The benefits of current treatments for depression are limited by low response rates, delayed therapeutic effects, and multiple side effects. Antidepressants affect a variety of neurotransmitter systems in different areas of the brain, and the mechanisms underlying their convergent effects on behavior have been unclear. Here we identify hippocampal bone morphogenetic protein (BMP) signaling as a common downstream pathway that mediates the behavioral effects of five different antidepressant classes (fluoxetine, bupropion, duloxetine, vilazodone, trazodone) and of electroconvulsive therapy.

Local non-pituitary growth hormone is induced with aging and facilitates epithelial damage

Microenvironmental factors modulating age-related DNA damage are unclear. Non-pituitary growth hormone (npGH) is induced in human colon, non-transformed human colon cells, and fibroblasts, and in 3-dimensional intestinal organoids with age-associated DNA damage. Autocrine/paracrine npGH suppresses p53 and attenuates DNA damage response (DDR) by inducing TRIM29 and reducing ATM phosphorylation, leading to reduced DNA repair and DNA damage accumulation.

Tmem160 contributes to the establishment of discrete nerve injury-induced pain behaviors in male mice

Chronic pain is a prevalent medical problem, and its molecular basis remains poorly understood. Here, we demonstrate the significance of the transmembrane protein (Tmem) 160 for nerve injury-induced neuropathic pain. An extensive behavioral assessment suggests a pain modality- and entity-specific phenotype in male Tmem160 global knockout (KO) mice: delayed establishment of tactile hypersensitivity and alterations in self-grooming after nerve injury.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com