Publications

A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies

Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP), an RNA-binding protein that can regulate the translation of specific mRNAs. In this study, we developed an FXS human forebrain organoid model and observed that the loss of FMRP led to dysregulated neurogenesis, neuronal maturation and neuronal excitability. Bulk and single-cell gene expression analyses of FXS forebrain organoids revealed that the loss of FMRP altered gene expression in a cell-type-specific manner.

Neuroinflammatory astrocyte subtypes in the mouse brain

Astrocytes undergo an inflammatory transition after infections, acute injuries and chronic neurodegenerative diseases. How this transition is affected by time and sex, its heterogeneity at the single-cell level and how sub-states are spatially distributed in the brain remains unclear. In this study, we investigated transcriptome changes of mouse cortical astrocytes after an acute inflammatory stimulus using the bacterial cell wall endotoxin lipopolysaccharide. We identified fast transcriptomic changes in astrocytes occurring within hours that drastically change over time.

Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve

Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease.

The rostromedial tegmental (RMTg) \"brake\" on dopamine and behavior: A decade of progress but also much unfinished work

Between 2005-2009, several research groups identified a strikingly dense inhibitory input to midbrain dopamine neurons in a previously uncharted region posterior to the ventral tegmental area (VTA). This region is now denoted as either the rostromedial tegmental nucleus (RMTg) or the "tail of the VTA" (tVTA), and is recognized to express distinct genetic markers, encode negative "prediction errors" (inverse to dopamine neurons), and play critical roles in behavioral inhibition and punishment learning.

TNF-Related Apoptosis-Inducing Ligand (TRAIL) Loss in Canine Mammary Carcinoma

Escaping apoptosis is a hallmark of cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a central molecule that regulates the extrinsic apoptotic pathway, has been widely investigated in human oncology; however, investigations focusing on the endogenous expression of TRAIL in canine tumors are lacking. Therefore, we aimed to examine the expression of endogenous TRAIL in canine mammary tumors and analyzed its correlation to downstream molecules Fas-associated death domain protein (FADD) and caspase-3, and to the apoptotic index.

Loss of Sprouty produces a ciliopathic skeletal phenotype in mice through upregulation of Hedgehog signaling

The Sprouty family is a highly conserved group of intracellular modulators of receptor tyrosine kinase (RTK)-signaling pathways, which have been recently linked to primary cilia. Disruptions in the structure and function of primary cilia cause inherited disorders called ciliopathies. We aimed to evaluate Sprouty2 and Sprouty4 gene dependent alterations of ciliary structure and to focus on the determination of its association with Hedgehog signaling defects in chondrocytes.

Activation of proneuronal transcription factor Ascl1 in maternal liver ensures a healthy pregnancy

Maternal liver exhibits robust adaptations to pregnancy to accommodate the metabolic needs of developing and growing placenta and fetus by largely unknown mechanisms.

Delta-like1-expressing cells at the gland base promote proliferation of gastric antral stem cells in mouse

Notch pathway signaling maintains gastric epithelial cell homeostasis by regulating stem cell proliferation and differentiation. We previously identified NOTCH1 and NOTCH2 as the key Notch receptors controlling gastric stem cell function. Here, we identify the niche cells and critical Notch ligand responsible for regulating stem cell proliferation in the distal mouse stomach.Expression of Notch ligands in the gastric antrum was determined by qRT-PCR and cellular localization was determined by in situ hybridization and immunostaining.

Yap Promotes Noncanonical Wnt Signals from Cardiomyocytes for Heart Regeneration

Rationale: During neonatal heart regeneration, the fibrotic response, which is required to prevent cardiac rupture, resolves via poorly understood mechanisms. Deletion of the Hippo pathway gene Sav in adult CMs increases Yap activity and promotes cardiac regeneration, partly by inducing fibrosis resolution. Deletion of Yap in neonatal cardiomyocytes (CMs) leads to increased fibrosis and loss of neonatal heart regeneration, suggesting that Yap inhibits fibrosis by regulating intercellular signaling from CMs to cardiac fibroblasts (CFs).

Spatially organized multicellular immune hubs in human colorectal cancer

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com