Neuroscience

Voltage-gated calcium channel subunit α2δ-1 in spinal dorsal horn neurons contributes to aberrant excitatory synaptic transmission and mechanical hypersensitivity after peripheral nerve injury

Neuropathic pain, an intractable pain symptom that occurs after nerve damage, is caused by the aberrant excitability of spinal dorsal horn (SDH) neurons. Gabapentinoids, the most commonly used drugs for neuropathic pain, inhibit spinal calcium-mediated neurotransmitter release by binding to α2δ-1, a subunit of voltage-gated calcium channels, and alleviate neuropathic pain. However, the exact contribution of α2δ-1 expressed in SDH neurons to the altered synaptic transmission and mechanical hypersensitivity following nerve injury is not fully understood.

Cellular Diversity in Human Subgenual Anterior Cingulate and Dorsolateral Prefrontal Cortex by Single-Nucleus RNA-sequencing

Regional cellular heterogeneity is a fundamental feature of the human neocortex; however, details of this heterogeneity are still undefined. We utilized single-nucleus RNA-sequencing (snRNA-seq) to examine cell-specific transcriptional features in the dorsolateral prefrontal cortex (DLPFC) and the subgenual anterior cingulate cortex (sgACC)-regions implicated in major psychiatric disorders. Droplet-based nuclei-capture and library preparation were performed on replicate samples from eight male donors without history of psychiatric or neurological disorder.

Cortical dopamine D5 receptors regulate neuronal circuit oscillatory activity and memory in rats

The dopamine D5 receptor (D5R) shows high expression in cortical regions, yet the role of the receptor in learning and memory remains poorly understood. This study evaluated the impact of prefrontal cortical (PFC) D5R knockdown in rats on learning and memory and assessed the role of the D5R in the regulation of neuronal oscillatory activity and glycogen synthase kinase-3 (GSK-3β), processes integral to cognitive function.Using an adeno-associated viral (AAV) vector, male rats were infused with shRNA to the D5R bilaterally into the PFC.

Dual truncation of tau by caspase-2 accelerates its CHIP-mediated degradation

Intraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2. In addition, we show that the previously described cleavage site at D421 is also efficiently processed by caspase-2, and both sites are cleaved in human brain samples.

Decreased expression of synaptic genes in the vestibular ganglion of rodents following subchronic ototoxic stress

The vestibular ganglion contains primary sensory neurons that are postsynaptic to the transducing hair cells (HC) and project to the central nervous system. Understanding the response of these neurons to HC stress or loss is of great interest as their survival and functional competence will determine the functional outcome of any intervention aiming at repair or regeneration of the HCs. We have shown that subchronic exposure to the ototoxicant 3,3'-iminodipropionitrile (IDPN) in rats and mice causes a reversible detachment and synaptic uncoupling between the HCs and the ganglion neurons.

TRPM4 regulates hilar mossy cell loss in temporal lobe epilepsy

Mossy cells comprise a large fraction of excitatory neurons in the hippocampal dentate gyrus, and their loss is one of the major hallmarks of temporal lobe epilepsy (TLE). The vulnerability of mossy cells in TLE is well known in animal models as well as in patients; however, the mechanisms leading to cellular death is unclear.Transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated non-selective cation channel regulating diverse physiological functions of excitable cells.

Chronic immune activation and gut barrier dysfunction is associated with neuroinflammation in ART-suppressed SIV+ rhesus macaques

HIV-associated neurocognitive disorders (HAND) affect ~40% of virally suppressed people with HIV (PWH), however, the precise viral dependent and independent changes to the brain are unclear. Here we characterized the CNS reservoir and immune environment of SIV-infected (SIV+) rhesus macaques during acute (n = 4), chronic (n = 12) or ART-suppressed SIV infection (n = 11). Multiplex immunofluorescence for markers of SIV infection (vRNA/vDNA) and immune activation was performed on frontal cortex and matched colon tissue.

Role of the Voltage-Gated Proton Channel Hv1 in Nervous Systems

Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others.

Development And Validation Of Painface, A Software Platform That Simplifies And Standardizes Mouse Grimace Analyses

Facial grimaces are now commonly used to quantify spontaneous pain in mice and other mammalian species, but scoring remains subjective and relies on humans with very different levels of proficiency. Here, we developed a Mouse Grimace Scale (MGS) for black-coated (C57BL/6) mice consisting of four facial action units (orbitals, nose, ears, whiskers). We used this scale to generate ground truth data from over 70,000 images of black mice in different settings.

Upregulation of carbonic anhydrase 1 beneficial for depressive disorder

Carbonic Anhydrase 1 (CAR1) is a zinc-metalloenzyme that catalyzes the hydration of carbon dioxide, and the alteration of CAR1 has been implicated in neuropsychiatric disorders. However, the mechanism underlying the role of CAR1 in major depressive disorder (MDD) remains largely unknown. In this study, we report the decreased level of CAR1 in MDD patients and depression-like model rodents. We found that CAR1 is expressed in hippocampal astrocytes and CAR1 regulates extracellular bicarbonate concentration and pH value in the partial hilus.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com