Neuroscience

Experimenters' sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor

We show that the sex of human experimenters affects mouse behaviors and responses following administration of the rapid-acting antidepressant ketamine and its bioactive metabolite (2R,6R)-hydroxynorketamine. Mice showed aversion to the scent of male experimenters, preference for the scent of female experimenters and increased stress susceptibility when handled by male experimenters. This human-male-scent-induced aversion and stress susceptibility was mediated by the activation of corticotropin-releasing factor (CRF) neurons in the entorhinal cortex that project to hippocampal area CA1.

Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders

Astrocytes negatively impact neuronal development in many models of neurodevelopmental disorders (NDs); however, how they do this, and if mechanisms are shared across disorders, is not known. In this study, we developed a cell culture system to ask how astrocyte protein secretion and gene expression change in three mouse models of genetic NDs (Rett, Fragile X and Down syndromes). ND astrocytes increase release of Igfbp2, a secreted inhibitor of insulin-like growth factor (IGF).

Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance

Type 2 diabetes with obesity-related insulin resistance as the main manifestation is associated with an increased risk of cognitive impairment. Adipose tissue plays an important role in this process. Here, we demonstrated that adipose tissue-derived extracellular vesicles (EVs) and their cargo microRNAs (miRNAs) mediate inter-organ communication between adipose tissue and the brain, which can be transferred into the brain in a membrane protein-dependent manner and enriched in neurons, especially in the hippocampus.

Ensembles of endothelial and mural cells promote angiogenesis in prenatal human brain

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester.

Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour

Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour.

Spatial Quantification of Single Cell mRNA and Ligand Binding of the Kappa Opioid Receptor in the Rat Hypothalamus

Detailed quantification of brain tissue provides a deeper understanding of changes in expression and function. We have created a pipeline to study the detailed expression patterns of the kappa opioid receptor in the rat hypothalamus using high resolution fluorescence microscopy and receptor autoradiography. The workflow involved structured serial sampling of rat hypothalamic nuclei, in situ detection of mRNA and receptor expression, and advanced image analysis. Our results demonstrate how maintaining spatial information can lead to increased understanding of RNA and protein expression.

Ex situ perfusion fixation for brain banking: a technical report

Perfusion fixation is a well-established technique in animal research to improve preservation quality in the study of many tissues, including the brain. There is a growing interest in using perfusion to fix postmortem human brain tissue to achieve the highest fidelity preservation for downstream high-resolution morphomolecular brain mapping studies.

Sex-distinct microglial activation and myeloid cell infiltration in the spinal cord after painful peripheral injury

Chronic pain is a common and often debilitating problem that affects 100 million Americans. A better understanding of pain’s molecular mechanisms is necessary for developing safe and effective therapeutics. Microglial activation has been implicated as a mediator of chronic pain in numerous preclinical studies; unfortunately, translational efforts using known glial modulators have largely failed, perhaps at least in part due to poor specificity of the compounds pursued, or an incomplete understanding of microglial reactivity.

Alzheimer’s disease-associated U1 snRNP splicing dysfunction causes neuronal hyperexcitability and cognitive impairment

A, Representative co-immunofluorescence staining of 5xFAD and dTg brain slides with Thioflavin S for plaques and the U1-70K C-terminal antibody for U1-70K depletion. Scale bar, 100 µm. The immunostaining was repeated from three animals. B, PCA for RNA-seq and proteomics studies. C, Distribution of splicing deficiency scores of mapped transcripts. Statistical comparisons between different genotypes are shown (Kolmogorov-Smirnov test). D, Relative Aβ level in 5xFAD and dTg by the proteomics analysis (mean ± SEM, Student’s _t_-test, two-tailed, ns: not significant).

Mutant huntingtin messenger RNA forms neuronal nuclear clusters in rodent and human brains

Mutant mRNA and protein contribute to the clinical manifestation of many repeat-associated neurological disorders, with the presence of nuclear RNA clusters being a common pathological feature. Yet, investigations into Huntington's disease - caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene - have primarily focused on toxic protein gain-of-function as the primary disease-causing feature. To date, mutant HTT mRNA has not been identified as an in vivo hallmark of Huntington’s disease.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com