Neuroscience

Early postnatal serotonin modulation prevents adult-stage deficits in Arid1b-deficient mice through synaptic transcriptional reprogramming

Autism spectrum disorder is characterized by early postnatal symptoms, although little is known about the mechanistic deviations that produce them and whether correcting them has long-lasting preventive effects on adult-stage deficits. ARID1B, a chromatin remodeler implicated in neurodevelopmental disorders, including autism spectrum disorder, exhibits strong embryonic- and early postnatal-stage expression.

An inhibitory brainstem input to dopamine neurons encodes nicotine aversion

Nicotine stimulates the dopamine (DA) system, which is essential for its rewarding effect. Nicotine is also aversive at high doses; yet, our knowledge about nicotine's dose-dependent effects on DA circuits remains limited. Here, we demonstrate that high doses of nicotine, which induce aversion-related behavior in mice, cause biphasic inhibitory and excitatory responses in VTA DA neurons that can be dissociated by distinct projections to lateral and medial nucleus accumben subregions, respectively.

The Immune Cell Profile of the Developing Rat Brain

Little is known about the peripheral immune cell (PIC) profile of the developing brain despite growing appreciation for these cells in the mature nervous system. To address this gap, the PIC profile, defined as which cells are present, where they are located, and for how long, was examined in the developing rat using spectral flow cytometry. Select regions of the rat brain (cerebellum, hippocampus, and hypothalamus) were examined at embryonic day 20, and postnatal days 0, 7 and 16. At their peak (E20), PICs were most abundant in the cerebellum, then the hippocampus and hypothalamus.

Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation

Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies; but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA-sequencing to investigate mouse brain endothelial cells with specific Ccm3 gene deletion (Ccm3-iECKO).

Peripheral apoE4 enhances Alzheimer's pathology and impairs cognition by compromising cerebrovascular function

The ε4 allele of the apolipoprotein E (APOE) gene, a genetic risk factor for Alzheimer's disease, is abundantly expressed in both the brain and periphery. Here, we present evidence that peripheral apoE isoforms, separated from those in the brain by the blood-brain barrier, differentially impact Alzheimer's disease pathogenesis and cognition. To evaluate the function of peripheral apoE, we developed conditional mouse models expressing human APOE3 or APOE4 in the liver with no detectable apoE in the brain.

Molecular and cellular evolution of the primate dorsolateral prefrontal cortex

The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. Here, we assessed over 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. While most transcriptomically-defined cell subtypes are conserved, we detected several only in some species and substantial species-specific molecular differences across homologous neuronal, glial and non-neural subtypes.

Pyramidal neuron subtype diversity governs microglia states in the neocortex

Microglia are specialized macrophages in the brain parenchyma that exist in multiple transcriptional states and reside within a wide range of neuronal environments1-4. However, how and where these states are generated remains poorly understood. Here, using the mouse somatosensory cortex, we demonstrate that microglia density and molecular state acquisition are determined by the local composition of pyramidal neuron classes.

Tlx3 controls the development of C-low threshold mechanoreceptors

Somatosensory information is signaled by primary sensory neurons located in dorsal root ganglia (DRG) or trigeminal ganglia. Type C-low threshold mechanoreceptors (C-LTMRs) are proposed to sense light touch. The differentiation and maturation of C-LTMRs are regulated by multiple transcript factors, including Zfp521 and Runx1. However, the molecular mechanism of C-LTMR development still remains largely unclear. RNA sequencing (RNA-seq) was performed to detect transcriptional changes in Tlx3cko DRGs compared to controls. In situ hybridization and RNAscope were used to verify RNA-seq data.

Light receptors in the avian brain and seasonal reproduction

Detection and transduction of photic cues by nonvisual photoreceptors, located in the deep brain, is a critical component of timing seasonal reproduction in birds. However, the precise identity of the photoreceptors responsible for detection of salient photic cues remains uncertain and debated. Here I review of the existing evidence for each of the three candidate photoreceptive opsins: Vertebrate Ancient Opsin, Melanopsin, and Neuropsin, including localization, action spectrum, and data from experimental manipulation of opsin expression.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com