Neuroscience

Functionally clustered mRNAs are distinctly enriched at cortical astroglial processes and are preferentially affected by FMRP deficiency

Mature protoplasmic astroglia in the mammalian central nervous system (CNS) uniquely possess a large number of fine processes that have been considered primary sites to mediate astroglia to neuron synaptic signaling. However, localized mechanisms for regulating interactions between astroglial processes and synapses, especially for regulating the expression of functional surface proteins at these fine processes, are largely unknown.

Post-surgical latent pain sensitization is driven by descending serotonergic facilitation and masked by µ-opioid receptor constitutive activity (MORCA) in the rostral ventromedial medulla

Following tissue injury, latent sensitization (LS) of nociceptive signaling can persist indefinitely, kept in remission by compensatory µ-opioid receptor constitutive activity (MORCA) in the dorsal horn of the spinal cord. To demonstrate LS, we conducted plantar incision in mice and then waited 3-4 weeks for hypersensitivity to resolve. At this time (remission), systemic administration of the opioid receptor antagonist/inverse agonist naltrexone reinstated mechanical and heat hypersensitivity.

Central NPFF signalling is critical in the regulation of glucose homeostasis

Neuropeptide FF (NPFF) group peptides belong to the evolutionary conserved RF-amide peptide family. While they have been assigned a role as pain modulators, their roles in other aspects of physiology have received much less attention. NPFF peptides and their receptor NPFFR2 have strong and localized expression within the dorsal vagal complex that has emerged as the key centre for regulating glucose homeostasis.

Involvement of LIN28A in Wnt-dependent regulation of hippocampal neurogenesis in the aging brain

Hippocampal neurogenesis declines with aging. Wnt ligands and antagonists within the hippocampal neurogenic niche regulate the proliferation of neural progenitor cells and the development of new neurons, and the changes of their levels in the niche mediate aging-associated decline of neurogenesis. We found that RNA-binding protein LIN28A remained existent in neural progenitor cells and granule neurons in the adult hippocampus and that it decreased with aging.

Persistent cortical and white matter inflammation after therapeutic hypothermia for ischemia in near-term fetal sheep

Therapeutic hypothermia significantly improves outcomes after moderate-severe hypoxic-ischemic encephalopathy (HIE), but it is partially effective. Although hypothermia is consistently associated with reduced microgliosis, it is still unclear whether it normalizes microglial morphology and phenotype.Near-term fetal sheep (n = 24) were randomized to sham control, ischemia-normothermia, or ischemia-hypothermia.

Genetic encoding of an esophageal motor circuit

Motor control of the striated esophagus originates in the nucleus ambiguus (nAmb), a vagal motor nucleus that also contains upper airway motor neurons and parasympathetic preganglionic neurons for the heart and lungs. We disambiguate nAmb neurons based on their genome-wide expression profiles, efferent circuitry, and ability to control esophageal muscles. Our single-cell RNA sequencing analysis predicts three molecularly distinct nAmb neuron subtypes and annotates them by subtype-specific marker genes: Crhr2, Vipr2, and Adcyap1.

The nonclassical MHC class I Qa-1 expressed in layer 6 neurons regulates activity-dependent plasticity via microglial CD94/NKG2 in the cortex

Significance Molecules regulated by neuronal activity are necessary for circuits to adapt to changing inputs. Specific classical major histocompatibility class I (MHCI) molecules play roles in circuit and synaptic plasticity, but the function of most members of this family remains unexplored in brain. Here, we show that a nonclassical MHCI molecule, Qa-1 (H2-T23), is expressed in a subset of excitatory neurons and regulated by visually driven activity in the cerebral cortex. Moreover, CD94/NKG2 heterodimers, cognate receptors for Qa-1, are expressed in microglia.

RARE-17. Multi-institutional craniopharyngioma cohort highlights need for more comprehensive data collection on c

BACKGROUND: Pediatric craniopharyngioma is associated with long-term survival, but tumor- and therapy-related complications often negatively impact quality of life (QoL). Standard treatments include resection and radiation, but institutional practices vary and recurrence rates remain high. In this review, we utilized a cohort from the Children’s Brain Tumor Network (CBTN) to evaluate outcomes for craniopharyngioma. METHODS: CBTN provides clinical and genomic data for pediatric patients diagnosed with primary central nervous system tumors across 25+ institutions.

RARE-21Sox2 plays an important role in choroid plexus tumor development

Choroid plexus (CP) tumors are rare primary brain neoplasms found most commonly in children and are thought to arise from CP epithelial cells. Sox2 is a transcription factor that not only plays a role in development in the ventricular zone, CP, and roof plate, but also contributes to cancer stemness, tumorigenesis, and drug resistance. Gene expression studies demonstrate aberrant Sox2 expression in human CP tumors, suggesting a role in tumor development. A subset of CP tumors exhibit abnormal NOTCH pathway activity.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com