Neuroscience

Cell-specific deletion of PGC-1α from medium spiny neurons causes transcriptional alterations and age-related motor impairment

Multiple lines of evidence indicate that a reduction in the expression and function of the transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator-1α (PGC-1α) is associated with neurodegeneration in diseases such as Huntington Disease (HD). Polymorphisms in the PGC-1α gene modify HD progression, and PGC-1α expression is reduced in striatal medium spiny neurons (MSNs) of HD patients and mouse models.

Choice for drug or natural reward engages largely overlapping neuronal ensembles in the infralimbic prefrontal cortex

Cue-reward associations form distinct memories that can drive appetitive behaviors and are involved in craving for both drugs and natural rewards. Distinct sets of neurons, so called neuronal ensembles, in the infralimbic area (IL) of the medial prefrontal cortex play a key role in alcohol seeking. Whether this ensemble is specific for alcohol or controls reward seeking in general remains unclear. Here, we compared IL ensembles formed upon recall of drug (alcohol) or natural reward (saccharin) memories in male Wistar rats.

Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease

Genetic variation modulating risk of sporadic Parkinson disease (PD) has been primarily explored through genome-wide association studies (GWASs). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal time points. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a postnatal neuroblast population and substantia nigra (SN) DA neurons.

Hierarchical neural architecture underlying thirst regulation.

Neural circuits for appetites are regulated by both homeostatic perturbations and ingestive behaviour. However, the circuit organization that integrates these internal and external stimuli is unclear. Here we show in mice that excitatory neural populations in the lamina terminalis form a hierarchical circuit architecture to regulate thirst.

Characterization of knockin mice at the Rosa26, Tac1 and Plekhg1 loci generated by homologous recombination in oocytes

Design and engineering of complex knockin mice has revolutionized the in vivo manipulation of genetically defined cells. Recently development of the bacterial clustered regularly interspersed short palindromic repeats (CRISPR) associated protein 9 (Cas9) system for single site cleavage of mammalian genomes has opened the way for rapid generation of knockin mice by targeting homology directed repair to selected cleavage sites.

Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum

The ventral pallidum (VP) lies at the interface between sensory, motor, and cognitive processing-with a particular role in mounting behavioral responses to rewards. Though the VP is predominantly GABAergic, glutamate neurons were recently identified, though their relative abundances and respective roles are unknown. Here, we show that VP glutamate neurons are concentrated in the rostral ventromedial VP and project to qualitatively similar targets as do VP GABA neurons.

Early emergence of cortical interneuron diversity in the mouse embryo

GABAergic interneurons regulate neural circuit activity in the mammalian cerebral cortex. These cortical interneurons are structurally and functionally diverse. Here, we use single-cell transcriptomics to study the origins of this diversity in mouse. We identify distinct types of progenitor cells and newborn neurons in the ganglionic eminences, the embryonic proliferative regions that give rise to cortical interneurons.

A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling

The lateral habenula (LHb) has a key role in integrating a variety of neural circuits associated with reward and aversive behaviors. There is limited information about how the different cell types and neuronal circuits within the LHb coordinate physiological and motivational states.

Silencing Alpha Synuclein in Mature Nigral Neurons Results in Rapid Neuroinflammation and Subsequent Toxicity

Human studies and preclinical models of Parkinson’s disease implicate the involvement of both the innate and adaptive immune systems in disease progression. Further, pro-inflammatory markers are highly enriched near neurons containing pathological forms of alpha synuclein (α-syn), and α-syn overexpression recapitulates neuroinflammatory changes in models of Parkinson’s disease. These data suggest that α-syn may initiate a pathological inflammatory response, however the mechanism by which α-syn initiates neuroinflammation is poorly understood.

The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra

Presynaptic cannabinoid-1 receptors (CB1-R) bind endogenous and exogenous cannabinoids to modulate neurotransmitter release. CB1-Rs are expressed throughout the basal ganglia, including striatum and substantia nigra, where they play a role in learning and control of motivated actions. However, the pattern of CB1-R expression across different striatal compartments, microcircuits and efferent targets, and the contribution of different CB1-R-expressing neurons to this pattern, are unclear.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com