Metabolism

An H2R-dependent medial septum histaminergic circuit mediates feeding behavior

Novel targets for treating feeding-related diseases are of great importance, and histamine has long been considered an anorexigenic agent. However, understanding its functions in feeding in a circuit-specific way is still limited. Here, we report a medial septum (MS)-projecting histaminergic circuit mediating feeding behavior. This MS-projecting histaminergic circuit is functionally inhibited during food consumption, and bidirectionally modulates feeding behavior via downstream H2, but not H1, receptors on MS glutamatergic neurons.

Protein tyrosine phosphatase receptor δ serves as the orexigenic asprosin receptor

Asprosin is a fasting-induced glucogenic and centrally acting orexigenic hormone. The olfactory receptor Olfr734 is known to be the hepatic receptor for asprosin that mediates its effects on glucose production, but the receptor for asprosin's orexigenic function has been unclear. Here, we have identified protein tyrosine phosphatase receptor δ (Ptprd) as the orexigenic receptor for asprosin. Asprosin functions as a high-affinity Ptprd ligand in hypothalamic AgRP neurons, regulating the activity of this circuit in a cell-autonomous manner.

In vitro cell cultures of Brunner's glands from male mouse to study GLP-1 receptor function

Exocrine glands in the submucosa of the proximal duodenum secrete alkaline fluid containing mucus to protect the intestinal mucosa from acidic stomach contents. These glands, known as Brunner's gland, express high glucagon-like peptide 1 receptor (GLP-1R) levels. Previous studies have suggested that activation of the GLP-1R induces expression of barrier protective genes in Brunner's glands. Still, the lack of a viable in vitro culture of Brunner's glands has hampered additional studies of the functional consequences of GLP-1R activation.

A planar culture model of human absorptive enterocytes reveals metformin increases fatty acid oxidation and export

Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation but are limited in physiological relevance or preclude simultaneous apical and basal access.

Single-cell molecular and functional mapping of POMC neurons in obesity: a multi-modal approach

The brain plays a crucial role in maintaining the bodys energy needs, a process involving the activity of a group of hypothalamic neurons that express the neuropeptidergic marker pro-opiomelanocortin (POMC). POMC neuronal dysfunction can cause obesity and its associated metabolic sequelae. However, this population of neurons is highly diverse at a molecular and functional level, and whether or not such heterogeneity is implicated in disease establishment or progression has yet to be elucidated.

Neuron-Keratinocyte Communication in the Epidermis in Painful Diabetic Neuropathy

Painful diabetic neuropathy (PDN) is one of the most common and intractable complications of diabetes. PDN is characterized by small-fiber degeneration, which can progress to complete loss of cutaneous innervation and is accompanied by neuropathic pain. Uncovering the mechanisms underlying axonal degeneration in PDN remains a major challenge to finding effective and disease-modifying therapies. Sensory nerve afferents normally extend into the epidermis in close juxtaposition to keratinocytes but degenerate in diabetic skin.

Endogenous Lipid-GPR120 Signaling Modulates Pancreatic Islet Homeostasis to Different Extents

Long-chain fatty acids (LCFAs) not only are energy sources but also serve as signaling molecules. GPR120, an LCFA receptor, plays key roles in maintaining metabolic homeostasis. However, whether endogenous ligand-GPR120 circuits exist and how such circuits function in pancreatic islets are unclear. Here, we found that endogenous GPR120 activity in pancreatic δ cells modulated islet functions. At least two unsaturated LCFAs, oleic acid (OA) and linoleic acid (LA), were identified as GPR120 agonists within pancreatic islets.

GIPR Agonism Inhibits PYY-Induced Nausea-Like Behavior

The induction of nausea and emesis is a major barrier to maximizing the weight loss profile of obesity medications, and therefore, identifying mechanisms that improve tolerability could result in added therapeutic benefit. The development of Peptide YY (PYY)-based approaches to treat obesity are no exception, as PYY receptor agonism is often accompanied by nausea and vomiting. Here, we sought to determine whether glucose-dependent insulinotropic polypeptide (GIP) receptor agonism reduces PYY-induced nausea-like behavior in mice.

Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice

Obesity-associated complications are causing increasing morbidity and mortality worldwide. Expansion of adipose tissue in obesity leads to a state of low-grade chronic inflammation and dysregulated metabolism, resulting in insulin resistance and metabolic syndrome. Adipose tissue macrophages (ATMs) accumulate in obesity and are a source of proinflammatory cytokines that further aggravate adipocyte dysfunction. Macrophages are rich sources of cyclooxygenase (COX), the rate limiting enzyme for prostaglandin E2 (PGE2) production.

Suo Quan Wan ameliorates bladder overactivity and regulates neurotransmission via regulating Myosin Va protein expression

Ancient prescriptions of Suo Quan Wan (SQW) have therapeutic effects on diabetic bladder dysfunction. However, the underlying mechanism remains unclear. Here, we hypothesized that SQW ameliorates bladder overactivity and regulates neurotransmission via regulating Myosin Va protein expression.After diabetic rats were induced by streptozotocin (65 mg/kg), the model of diabetic bladder dysfunction was established by detecting fasting blood glucose, urodynamic test, in vitro muscle strip experiments, and histological examination.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com