Development

Dental niche cells directly contribute to tooth reconstitution and morphogenesis

Mammalian teeth develop from the inductive epithelial-mesenchymal interaction, an important mechanism shared by many organs. The cellular basis for such interaction remains elusive. Here, we generate a dual-fluorescence model to track and analyze dental cells from embryonic to postnatal stages, in which Pitx2+ epithelium and Msx1+ mesenchyme are sufficient for tooth reconstitution. Single-cell RNA sequencing and spatial mapping further revealed critical cellular dynamics during molar development, where tooth germs are organized by Msx1+Sdc1+ dental papilla and surrounding dental niche.

Embryogenic stem cell-derived intestinal crypt fission directs de novo crypt genesis

Intestinal epithelial replenishment is fueled by continuously dividing intestinal stem cells (ISCs) resident at the crypt niche. However, the cell type(s) enabling replenishment upon damage and subsequent loss of whole crypts remain largely unclear. Using Set domain-containing protein 4 (Setd4), we identify a small population with reserve stem cell characteristics in the mouse intestine.

Regulation of RNA localization during oocyte maturation by dynamic RNA-ER association and remodeling of the ER

Asymmetric localization of mRNAs is crucial for cell polarity and cell fate determination. By performing fractionation RNA-seq, we report here that a large number of maternal RNAs are associated with the ER in Xenopus oocytes but are released into the cytosol after oocyte maturation. We provide evidence that the majority of ER-associated RNA-binding proteins (RBPs) remain associated with the ER after oocyte maturation. However, all ER-associated RBPs analyzed exhibit reduced binding to some of their target RNAs after oocyte maturation.

Nail-associated mesenchymal cells contribute to and are essential for dorsal digit tip regeneration

Here, we ask why the nail base is essential for mammalian digit tip regeneration, focusing on the inductive nail mesenchyme. We identify a transcriptional signature for these cells that includes Lmx1b and show that the Lmx1b-expressing nail mesenchyme is essential for blastema formation. We use a combination of Lmx1bCreERT2-based lineage-tracing and single-cell transcriptional analyses to show that the nail mesenchyme contributes cells for two pro-regenerative mechanisms. One group of cells maintains their identity and regenerates the new nail mesenchyme.

A transposable element into the human long noncoding RNA CARMEN is a switch for cardiac precursor cell specification

The major cardiac cell types composing the adult heart arise from common multipotent precursor cells. Cardiac lineage decisions are guided by extrinsic and cell-autonomous factors, including recently discovered long noncoding RNAs (lncRNAs). The human lncRNA CARMEN, which is known to dictate specification towards the cardiomyocyte (CM) and the smooth muscle cell (SMC) fates, generates a diversity of alternatively spliced isoforms.The CARMEN locus can be manipulated to direct human primary cardiac precursor cells (CPCs) into specific cardiovascular fates.

Nodal signaling establishes a competency window for stochastic cell fate switching

Specification of the germ layers by Nodal signaling has long been regarded as an archetype of how graded morphogens induce different cell fates. However, this deterministic model cannot explain why only a subset of cells at the early zebrafish embryo margin adopt the endodermal fate, whereas their immediate neighbours, experiencing a similar signaling environment, become mesoderm.

Single-cell chromatin accessibility identifies enhancer networks driving gene expression during spinal cord development in mouse

Spinal cord development is precisely orchestrated by spatiotemporal gene regulatory programs. However, the underlying epigenetic mechanisms remain largely elusive. Here, we profiled single-cell chromatin accessibility landscapes in mouse neural tubes spanning embryonic days 9.5-13.5. We identified neuronal-cell-cluster-specific cis-regulatory elements in neural progenitors and neurons.

SOX17-positive rete testis epithelium is required for Sertoli valve formation and normal spermiogenesis in the male mouse

Seminiferous tubules (STs) in the mammalian testes are connected to the rete testis (RT) via a Sertoli valve (SV). Spermatozoa produced in the STs are released into the tubular luminal fluid and passively transported through the SV into the RT. However, the physiological functions of the RT and SV remain unclear. Here, we identified the expression of Sox17 in RT epithelia. The SV valve was disrupted before puberty in RT-specific Sox17 conditional knockout (Sox17-cKO) male mice. This induced a backflow of RT fluid into the STs, which caused aberrant detachment of immature spermatids.

Endothelial PlexinD1 signaling instructs spinal cord vascularization and motor neuron development

How the vascular and neural compartment cooperate to achieve such a complex and highly specialized structure as the central nervous system is still unclear. Here, we reveal a crosstalk between motor neurons (MNs) and endothelial cells (ECs), necessary for the coordinated development of MNs. By analyzing cell-to-cell interaction profiles of the mouse developing spinal cord, we uncovered semaphorin 3C (Sema3C) and PlexinD1 as a communication axis between MNs and ECs.

A mineralizing pool of Gli1-expressing progenitors builds the tendon enthesis and demonstrates therapeutic potential

The enthesis, a fibrocartilaginous transition between tendon and bone, is necessary for force transfer from muscle to bone to produce joint motion. The enthesis is prone to injury due to mechanical demands, and it cannot regenerate. A better understanding of how the enthesis develops will lead to more effective therapies to prevent pathology and promote regeneration. Here, we used single-cell RNA sequencing to define the developmental transcriptome of the mouse entheses over postnatal stages.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com