Development

Origin and function of activated fibroblast states during zebrafish heart regeneration

The adult zebrafish heart has a high capacity for regeneration following injury. However, the composition of the regenerative niche has remained largely elusive. Here, we dissected the diversity of activated cell states in the regenerating zebrafish heart based on single-cell transcriptomics and spatiotemporal analysis. We observed the emergence of several transient cell states with fibroblast characteristics following injury, and we outlined the proregenerative function of collagen-12-expressing fibroblasts.

Single-cell roadmap of human gonadal development

Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy.

The ZSWIM8 ubiquitin ligase regulates neurodevelopment by guarding the protein quality of intrinsically disordered Dab1

Protein quality control (PQC) is essential for maintaining protein homeostasis and guarding the accuracy of neurodevelopment. Previously, we found that a conserved EBAX-type CRL regulates the protein quality of SAX-3/ROBO guidance receptors in Caenorhabditis elegans. Here, we report that ZSWIM8, the mammalian homolog of EBAX-1, is essential for developmental stability of mammalian brains. Conditional deletion of Zswim8 in the embryonic nervous system causes global cellular stress, partial perinatal lethality and defective migration of neural progenitor cells.

Adult re-expression of IRSp53 rescues NMDA receptor function and social behavior in IRSp53-mutant mice

IRSp53 (or BAIAP2) is an abundant excitatory postsynaptic scaffolding/adaptor protein that is involved in actin regulation and has been implicated in autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. IRSp53 deletion in mice leads to enhanced NMDA receptor (NMDAR) function and social deficits that are responsive to NMDAR inhibition. However, it remains unclear whether IRSp53 re-expression in the adult IRSp53-mutant mouse brain after the completion of brain development could reverse these synaptic and behavioral dysfunctions.

Association of complement component 4 with neuroimmune abnormalities in the subventricular zone in schizophrenia and autism spectrum disorders

An early inflammatory insult is the most recognized risk factor associated with neurodevelopmental psychiatric disorders, even more so than genetic variants. Notably, complement component 4 (C4), a molecule involved in inflammatory responses, has been strongly associated with schizophrenia (SZ) and its role in other neurodevelopmental disorders, such as autism (ASD), is an area of active investigation. However, while C4 in SZ has been implicated in the context of synaptic pruning, little is known about its neuroinflammatory role.

Identification of Lsd1-interacting non-coding RNAs as regulators of fly oogenesis

Lysine-specific demethylase 1 (Lsd1) plays a key role in balancing cell proliferation and differentiation. Lsd1 has been recently reported to associate with specific long noncoding RNAs (lncRNAs) to account for oncogenic gene expression in cancer cells. However, how lncRNA-Lsd1 interplay affects cell-specific differentiation remains elusive in vivo. Here, through Lsd1 specific RNA immunopecipitation sequencing (RIP-seq) experiments, we identify three long hairpin RNAs as Lsd1-interacting non-coding RNAs (LINRs) from fly ovaries.

The transcription factor Tbx5 regulates direction-selective retinal ganglion cell development and image stabilization

The diversity of visual input processed by the mammalian visual system requires the generation of many distinct retinal ganglion cell (RGC) types, each tuned to a particular feature. The molecular code needed to generate this cell-type diversity is poorly understood. Here, we focus on the molecules needed to specify one type of retinal cell: the upward-preferring ON direction-selective ganglion cell (up-oDSGC) of the mouse visual system. Single-cell transcriptomic profiling of up- and down-oDSGCs shows that the transcription factor Tbx5 is selectively expressed in up-oDSGCs.

O-GlcNAcylation promotes cerebellum development and medulloblastoma oncogenesis via SHH signaling

Sonic hedgehog (Shh) signaling plays a critical role in regulating cerebellum development by maintaining the physiological proliferation of granule neuron precursors (GNPs), and its dysregulation leads to the oncogenesis of medulloblastoma. O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuitry. Here, we demonstrate that O-GlcNAc transferase (OGT) in GNPs mediate the cerebellum development, and the progression of the Shh subgroup of medulloblastoma.

A robust and tunable system for targeted cell ablation in developing embryos

Cell ablation is a key method in the research fields of developmental biology, tissue regeneration, and tissue homeostasis. Eliminating specific cell populations allows for characterizing interactions that control cell differentiation, death, behavior, and spatial organization of cells. Current methodologies for inducing cell death suffer from relatively slow kinetics, making them unsuitable for analyzing rapid events and following primary and immediate consequences of the ablation.

DNGR-1-tracing marks an ependymal cell subset with damage-responsive neural stem cell potential

Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com