RNAscope

Schlafen-5 Inhibits LINE-1 Retrotransposition

LINE-1 (long interspersed element 1) is the only currently known active autonomous transposon in humans, and its retrotransposition may cause deleterious effects on the structure and function of host cell genomes and result in sporadic genetic diseases. Host cells therefore developed defence strategies to restrict LINE-1 mobilization. In this study, we demonstrated that IFN-inducible Schlafen5 (SLFN5) potently inhibits LINE-1 retrotransposition.

Knockdown of Porf-2 Restores Visual Function after Optic Nerve Crush Injury,

These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.

Ntrk Gene Alterations Were Renriched in Hepatoid or Enteroblastic Differentiation Type of Gastric Cancer

Background: The clinicopathologic profile of gastric cancer (GC) harboring oncogenic NTRK alterations are still unknown. And as reported, NTRK fusion was enriched in dMMR-type colorectal cancer (CRC), whereas in gastric cancer there was no research to explore the relationship between NTRK alterations and the expression of DNA mismatch repair proteins.

Distribution and Activation of Melanin-Concentrating Hormone Receptor-1 at Dopaminergic, GABAergic, and Glutamatergic Neurons in the Ventral Tegmental Area

Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide that acts through its receptor (MCHR1) to promote positive energy balance by increasing food intake and decreasing energy expenditure. MCH has been shown to inhibit dopamine release from the mesocorticolimbic dopamine pathway originating in the ventral tegmental area (VTA), and a hyperdopaminergic state underlies hyperactivity observed in animals lacking MCH or MCHR1. However, it is not known if the inhibitory effect of MCH on dopaminergic tone could be due to direct regulation of dopaminergic VTA neurons.

Protective Effect of Irsogladine against Aspirin-Induced Mucosal Injury in Human Induced Pluripotent Stem Cell-Derived Small Intestine

Background and Objectives: Acetylsalicylic acid (ASA) is widely used for preventing cerebrovascular and cardiovascular diseases. Gastrointestinal (GI) tract injury is one of the major complications of aspirin use, potentially leading to severe GI bleeding. However, no drugs for preventing aspirin-induced small intestinal injury have been developed. The aim of this study was to establish a human experimental model for investigating aspirin-induced small intestinal mucosal injury.

In Situ Hybridization (ISH) Combined with Immunocytochemistry (ICC) Co-detection of Phosphorylated EGFR in A431 Cultured Cells

Antibodies have been commonly used to study protein phosphorylation since the first phospho-specific antibody was described in 1981. Antibodies can be developed so that they specifically recognize phosphorylated areas of particular proteins. In situ hybridization (ISH) is the technique where specific RNA or DNA molecules can be detected in a single cell without the need for antibodies.

In Situ Hybridization (ISH) Combined with Immunohistochemistry (IHC) for Co-detection of EGFR RNA and Phosphorylated EGFR Protein in Lung Cancer Tissue

Detection of phosphorylated proteins in tissue sections using immunohistochemistry (IHC) is a challenging task. The absence of tissue staining may be caused by either a lack of protein expression or a lack of protein activation via its phosphorylation. To address this problem, we employed Integrated Co-detection Workflow (ICW) protocol to analyze lung cancer tissue sections by combining in situ hybridization (ISH) with IHC.

Nutrient metabolism of the nucleus pulposus: A literature review

Cells take in, consume, and synthesize nutrients for numerous physiological functions. This includes not only energy production but also macromolecule biosynthesis, which will further influence cellular signaling, redox homeostasis, and cell fate commitment. Therefore, alteration in cellular nutrient metabolism is associated with pathological conditions. Intervertebral discs, particularly the nucleus pulposus (NP), are avascular and exhibit unique metabolic preferences.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com