RNAscope Multiplex Fluorescent Assay

LTK and ALK promote neuronal polarity and cortical migration by inhibiting IGF1R activity

The establishment of axon-dendrite polarity is fundamental for radial migration of neurons, cortical patterning, and formation of neuronal circuits. Here, we show that the receptor tyrosine kinases, Ltk and Alk, are required for proper neuronal polarization. In isolated primary mouse embryonic neurons, the loss of Ltk and/or Alk causes a multiple axon phenotype. In mouse embryos and newborn pups, the absence of Ltk and Alk delays neuronal migration and subsequent cortical patterning.

Free fatty acid receptor 1 stimulates cAMP production and gut hormone secretion through Gq-mediated activation of adenylate cyclase 2

Free fatty acid receptor 1 (FFAR1) is highly expressed in enteroendocrine cells of the small intestine and pancreatic beta cells, where FFAR1 agonists function as GLP-1 and insulin secretagogues, respectively. Most efficacious are so-called second-generation synthetic agonists such as AM5262, which, in contrast to endogenous long-chain fatty acids are able to signal through both IP3/Ca2+ and cAMP pathways.

Npas4-mediated dopaminergic regulation of safety memory consolidation

Amygdala circuitry encodes associations between conditioned stimuli and aversive unconditioned stimuli and also controls fear expression. However, whether and how non-threatening information for unpaired conditioned stimuli (CS-) is discretely processed remains unknown. The fear expression toward CS- is robust immediately after fear conditioning but then becomes negligible after memory consolidation.

Epigenetically regulated RNA-binding proteins signify malaria hypnozoite dormancy

Dormancy enables relapsing malaria parasites, such as Plasmodium vivax and cynomolgi, to survive unfavorable conditions. It is enabled by hypnozoites, parasites remaining quiescent inside hepatocytes before reactivating and establishing blood-stage infection. We integrate omics approaches to explore gene-regulatory mechanisms underlying hypnozoite dormancy. Genome-wide profiling of activating and repressing histone marks identifies a few genes that get silenced by heterochromatin during hepatic infection of relapsing parasites.

Analysis of the microglia transcriptome across the human lifespan using single cell RNA sequencing

Microglia are tissue resident macrophages with a wide range of critically important functions in central nervous system development and homeostasis.In this study, we aimed to characterize the transcriptional landscape of ex vivo human microglia across different developmental ages using cells derived from pre-natal, pediatric, adolescent, and adult brain samples.

Glial dysregulation in the human brain in fragile X-associated tremor/ataxia syndrome

Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood.

Single-cell transcriptomic profiling of the mouse cochlea: An atlas for targeted therapies

Functional molecular characterization of the cochlea has mainly been driven by the deciphering of the genetic architecture of sensorineural deafness. As a result, the search for curative treatments, which are sorely lacking in the hearing field, has become a potentially achievable objective, particularly via cochlear gene and cell therapies. To this end, a complete inventory of cochlear cell types, with an in-depth characterization of their gene expression profiles right up to their final differentiation, is indispensable.

Cell-specific MAPT gene expression is preserved in neuronal and glial tau cytopathologies in progressive supranuclear palsy

Microtubule-associated protein tau (MAPT) aggregates in neurons, astrocytes and oligodendrocytes in a number of neurodegenerative diseases, including progressive supranuclear palsy (PSP). Tau is a target of therapy and the strategy includes either the elimination of pathological tau aggregates or reducing MAPT expression, and thus the amount of tau protein made to prevent its aggregation. Disease-associated tau affects brain regions in a sequential manner that includes cell-to-cell spreading.

A CRE/DRE dual recombinase transgenic mouse reveals synaptic zinc-mediated thalamocortical neuromodulation

Synaptic zinc is a neuromodulator that shapes synaptic transmission and sensory processing. The maintenance of synaptic zinc is dependent on the vesicular zinc transporter, ZnT3. Hence, the ZnT3 knockout mouse has been a key tool for studying the mechanisms and functions of synaptic zinc. However, the use of this constitutive knockout mouse has notable limitations, including developmental, compensatory, and brain and cell type specificity issues.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com