RNAscope Fluorescent Multiplex Assay

Inhibitory Kcnip2 neurons of the spinal dorsal horn control behavioral sensitivity to environmental cold

Proper sensing of ambient temperature is of utmost importance for the survival of euthermic animals, including humans. While considerable progress has been made in our understanding of temperature sensors and transduction mechanisms, the higher-order neural circuits processing such information are still only incompletely understood.

GPC3-Unc5 receptor complex structure and role in cell migration

Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules.

Bone formation in 2D culture of primary cells

Relevance of mineralized nodules in two-dimensional (2D) osteoblast/osteocyte cultures to bone biology, pathology, and engineering is a decades old question, but a comprehensive answer appears to be still wanting. Bone-like cells, extracellular matrix (ECM), and mineral were all reported but so were non-bone-like ones. Many studies described seemingly bone-like cell-ECM structures based on similarity to few select bone features _in vivo_, yet no studies examined multiple bone features simultaneously and none systematically studied all types of structures coexisting in the same culture.

Fibroblast Growth Factor Regulates Olfactory Bulb Formation by Controlling Radial Glial Cell Development

Fibroblast growth factor (FGF) signaling plays several important roles in the development of the central nervous system. During the mid-gestation stage, FGF receptors (FGFRs) are expressed in the ventricular zone of the telencephalon and regulate the proliferation and neuronal differentiation of radial glial cells (RGCs). Inhibition of FGFR signaling at this stage results in abnormal brain formation, particularly loss of FGFR1 signaling causes hypoplasia of the olfactory bulb (OB). However, how FGFR1 signaling regulates OB formation is not fully understood.

Distribution of acid-sensing ion channel subunits in human sensory neurons contrasts with that in rodents

Acid-sensing ion channels (ASICs) play a critical role in nociception in human sensory neurons. Four genes (ASIC1, ASIC2, ASIC3, and ASIC4) encoding multiple subunits through alternative splicing have been identified in humans. Real time-PCR experiments showed strong expression of three subunits ASIC1, ASIC2, and ASIC3 in human dorsal root ganglia; however, their detailed expression pattern in different neuronal populations has not been investigated yet.

Neurotransmitter phenotype and axonal projection patterns of VIP-expressing neurons in the inferior colliculus

Neurons in the inferior colliculus (IC), the midbrain hub of the central auditory pathway, send ascending and descending projections to other auditory brain regions, as well as projections to other sensory and non-sensory brain regions. However, the axonal projection patterns of individual classes of IC neurons remain largely unknown. Vasoactive intestinal polypeptide (VIP) is a neuropeptide expressed by subsets of neurons in many brain regions.

ACTIVATION OF HIV-1 PROVIRUSES INCREASES DOWNSTREAM CHROMATIN ACCESSIBILITY

It is unclear how the activation of HIV-1 transcription affects chromatin structure. We interrogated chromatin organization both genome-wide and nearby HIV-1 integration sites using Hi-C and ATAC-seq. In conjunction, we analyzed the transcription of the HIV-1 genome and neighboring genes. We found that long-range chromatin contacts did not differ significantly between uninfected cells and those harboring an integrated HIV-1 genome, whether the HIV-1 genome was actively transcribed or inactive.

Single-cell transcriptome analysis reveals cellular heterogeneity in mouse intra- and extra articular ligaments

Ligaments are collagenous connective tissues that connect bones. Injury of knee ligaments, namely anterior cruciate ligament (ACL) and medial collateral ligament (MCL), is common in athletes. Both ligaments have important functions, but distinct regeneration capacities. The capacity for recovery after injury also diminishes with age. However, cellular heterogeneity in the ligaments remains unclear. Here, we profiled the transcriptional signatures of ACL and MCL cells in mice using single-cell RNA sequencing.

Changes in Mitochondrial Size and Morphology in the RPE and Photoreceptors of the Developing and Ageing Zebrafish

Mitochondria are essential adenosine triphosphate (ATP)-generating cellular organelles. In the retina, they are highly numerous in the photoreceptors and retinal pigment epithelium (RPE) due to their high energetic requirements. Fission and fusion of the mitochondria within these cells allow them to adapt to changing demands over the lifespan of the organism. Using transmission electron microscopy, we examined the mitochondrial ultrastructure of zebrafish photoreceptors and RPE from 5 days post fertilisation (dpf) through to late adulthood (3 years).

The basolateral amygdala to lateral septum circuit is critical for regulating social novelty in mice

The lateral septum (LS) is a basal forebrain GABAergic region that is implicated in social novelty. However, the neural circuits and cell signaling pathways that converge on the LS to mediate social behaviors aren't well understood. Multiple lines of evidence suggest that signaling of brain-derived neurotrophic factor (BDNF) through its receptor TrkB plays important roles in social behavior. BDNF is not locally produced in LS, but we demonstrate that nearly all LS GABAergic neurons express TrkB.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com