RNAscope Fluorescent Multiplex Assay

Estrogen receptor α drives pro-resilient transcription in mouse models of depression

Most people exposed to stress do not develop depression. Animal models have shown that stress resilience is an active state that requires broad transcriptional adaptations, but how this homeostatic process is regulated remains poorly understood. In this study, we analyze upstream regulators of genes differentially expressed after chronic social defeat stress.

Metabotropic Glutamate Receptor 2/3 (mGluR2/3) Activation Suppresses TRPV1 Sensitization in Mouse, but Not Human Sensory Neurons

The use of human tissue to validate putative analgesic targets identified in rodents is a promising strategy for improving the historically poor translational record of preclinical pain research. We recently demonstrated that in mouse and human sensory neurons, agonists for metabotropic glutamate receptors 2 and 3 (mGluR2/3) reduce membrane hyperexcitability produced by the inflammatory mediator prostaglandin E2 (PGE2). Previous rodent studies indicate that mGluR2/3 can also reduce peripheral sensitization by suppressing inflammation-induced sensitization of TRPV1.

Presence of lytic Epstein-Barr virus infection in nasopharyngeal carcinoma.

Abstract

BACKGROUND:

Chromogenic Epstein-Barr virus-encoded RNA (EBER) in situ hybridization (EBER-ISH) is the gold standard to detect Epstein-Barr virus (EBV) but it is difficult to use in conjunction with immunohistochemistry (IHC). In this study, our purpose was to validate the sensitivity and specificity of RNAscope in detection of EBV infection in nasal epithelium and its stroma.

METHODS:

Plaque-dependent morphological and electrophysiological heterogeneity of microglia in an Alzheimer's disease mouse model.

Microglia, the central nervous system resident innate immune cells, cluster around Aβ plaques in Alzheimer's disease (AD). The activation phenotype of these plaque-associated microglial cells, and their differences to microglia distant to Aβ plaques, are incompletely understood. We used novel three-dimensional cell analysis software to comprehensively analyze the morphological properties of microglia in the TgCRND8 mouse model of AD in spatial relation to Aβ plaques.

Cell-specific deletion of PGC-1α from medium spiny neurons causes transcriptional alterations and age-related motor impairment

Multiple lines of evidence indicate that a reduction in the expression and function of the transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator-1α (PGC-1α) is associated with neurodegeneration in diseases such as Huntington Disease (HD). Polymorphisms in the PGC-1α gene modify HD progression, and PGC-1α expression is reduced in striatal medium spiny neurons (MSNs) of HD patients and mouse models.

Choice for drug or natural reward engages largely overlapping neuronal ensembles in the infralimbic prefrontal cortex

Cue-reward associations form distinct memories that can drive appetitive behaviors and are involved in craving for both drugs and natural rewards. Distinct sets of neurons, so called neuronal ensembles, in the infralimbic area (IL) of the medial prefrontal cortex play a key role in alcohol seeking. Whether this ensemble is specific for alcohol or controls reward seeking in general remains unclear. Here, we compared IL ensembles formed upon recall of drug (alcohol) or natural reward (saccharin) memories in male Wistar rats.

Hierarchical neural architecture underlying thirst regulation.

Neural circuits for appetites are regulated by both homeostatic perturbations and ingestive behaviour. However, the circuit organization that integrates these internal and external stimuli is unclear. Here we show in mice that excitatory neural populations in the lamina terminalis form a hierarchical circuit architecture to regulate thirst.

Characterization of knockin mice at the Rosa26, Tac1 and Plekhg1 loci generated by homologous recombination in oocytes

Design and engineering of complex knockin mice has revolutionized the in vivo manipulation of genetically defined cells. Recently development of the bacterial clustered regularly interspersed short palindromic repeats (CRISPR) associated protein 9 (Cas9) system for single site cleavage of mammalian genomes has opened the way for rapid generation of knockin mice by targeting homology directed repair to selected cleavage sites.

Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum

The ventral pallidum (VP) lies at the interface between sensory, motor, and cognitive processing-with a particular role in mounting behavioral responses to rewards. Though the VP is predominantly GABAergic, glutamate neurons were recently identified, though their relative abundances and respective roles are unknown. Here, we show that VP glutamate neurons are concentrated in the rostral ventromedial VP and project to qualitatively similar targets as do VP GABA neurons.

Liver macrophage-associated inflammation correlates with SIV burden and is substantially reduced following cART

Liver disease is a leading contributor to morbidity and mortality during HIV infection, despite the use of combination antiretroviral therapy (cART). The precise mechanisms of liver disease during HIV infection are poorly understood partially due to the difficulty in obtaining human liver samples as well as the presence of confounding factors (e.g. hepatitis co-infection, alcohol use).

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com