RNAscope 2.5 HD Red assay

A Functional Synonymous Variant in PDGFRA Is Associated with Better Survival in Acral Melanoma

Purpose: Polymorphisms of genes in the platelet-derived growth factor (PDGF) signaling pathway have been found to predict cutaneous melanoma (CM) survival, but their clinical effects in acral melanoma (AM) patients have not been explored. The aim of this study was to characterize the functional effect of the tag single-nucleotide polymorphism (SNP) rs2228230:C>T and assess its association with clinical outcomes in AM patients. Methods: The effect of rs2228230:C>T on mRNA structures and codon usage values were evaluated using in silico analyses.

Immunopathological characterization of red focal changes in Atlantic salmon (Salmo salar) white muscle

Farmed Atlantic salmon (Salmo salar) are prone to various conditions affecting the quality of the fillet. A well-known but so far poorly understood condition is the focal red changes in muscle, often referred to as haemorrhages. Such changes are characterized by muscle necrosis, haemorrhages and acute inflammation. They can progress into focal melanised changes, a chronic inflammatory condition with melanin-producing leukocytes. The initial cause of intramuscular haemorrhages is unknown. In this study, we aimed to reveal some of their key immunological features.

Diffuse Axonal Injury in the Rat Brain: Axonal Injury and Oligodendrocyte Activity Following Rotational Injury

Traumatic brain injury (TBI) commonly results in primary diffuse axonal injury (DAI) and associated secondary injuries that evolve through a cascade of pathological mechanisms. We aim at assessing how myelin and oligodendrocytes react to head angular-acceleration-induced TBI in a previously described model. This model induces axonal injuries visible by amyloid precursor protein (APP) expression, predominantly in the corpus callosum and its borders. Brain tissue from a total of 27 adult rats was collected at 24 h, 72 h and 7 d post-injury.

Up-Regulation of Activating Transcription Factor 3 in Human Fibroblasts Inhibits Melanoma Cell Growth and Migration Through a Paracrine Pathway

The treatment of melanoma has remained a difficult challenge. Targeting the tumor stroma has recently attracted attention for developing novel strategies for melanoma therapy. Activating transcription factor 3 (ATF3) plays a crucial role in regulating tumorigenesis and development, but whether the expression of ATF3 in human dermal fibroblasts (HDFs) can affect melanoma development hasn't been studied. Our results show that ATF3 expression is downregulated in stromal cells of human melanoma.

A mechanistic analysis placental intravascular thrombus formation in COVID-19 patients

COVID-19, the disease caused by the novel Coronavirus, SARS-CoV-2, is increasingly being recognized as a systemic thrombotic and microvascular injury syndrome that may have its roots in complement activation. We had the opportunity to study the placental pathology of five full-term births to COVID-19 patients. All five exhibited histology indicative of fetal vascular malperfusion characterized by focal avascular villi and thrombi in larger fetal vessels. Vascular complement deposition in the placentas was not abnormal, and staining for viral RNA and viral spike protein was negative.

Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation

Gain of function (GOF) DNA binding domain (DBD) mutations of TP53 upregulate chromatin regulatory genes that promote genome-wide histone methylation and acetylation. Here, we therapeutically exploit the oncogenic GOF mechanisms of p53 codon 158 (Arg158) mutation, a DBD mutant found to be prevalent in lung carcinomas. Using high throughput compound screening and combination analyses, we uncover that acetylating mutp53R158G could render cancers susceptible to cisplatin-induced DNA stress.

Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier.

Astroviruses are a global cause of pediatric diarrhea, but they are largely understudied, and it is unclear how and where they replicate in the gut. Using an in vivo model, here we report that murine astrovirus preferentially infects actively secreting small intestinal goblet cells, specialized epithelial cells that maintain the mucus barrier. Consequently, virus infection alters mucus production, leading to an increase in mucus-associated bacteria and resistance to enteropathogenic E. coli colonization.

Mouse models of X-linked juvenile retinoschisis have an early onset phenotype, the severity of which varies with genotype

X-linked juvenile retinoschisis (XLRS) is an early onset inherited condition that affects primarily males and is characterized by cystic lesions of the inner retina, decreased visual acuity and contrast sensitivity, and a selective reduction of the electroretinogram (ERG) b-wave. Although XLRS is genetically heterogeneous, all mouse models developed to date involve engineered or spontaneous null mutations.

Placental chemokine compartmentalisation: A novel mammalian molecular control mechanism

Atypical chemokine receptor 2 (ACKR2) is a chemokine-scavenging receptor. ACKR2-/-embryos display a reduction in size of a novel, to our knowledge, embryonic skin macrophage population referred to as 'intermediate' cells. CC chemokine receptor 2 (CCR2)-/-embryos display an identical phenotype, indicating that these cells require CCR2 to enable them to populate embryonic skin.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com