RNAscope 2.5 HD Red assay

SARS-CoV-2 Disease Severity in the Golden Syrian Hamster Model of Infection Is Related to the Volume of Intranasal Inoculum

The golden Syrian hamster (Mesocricetus auratus) is now commonly used in preclinical research for the study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the assessment of vaccines, drugs and therapeutics.

Stimulator of interferon genes ( STING ) expression in the enteric nervous system and contributions of glial STING in disease

Background Appropriate host-microbe interactions are essential for enteric glial development and subsequent gastrointestinal function, but the potential mechanisms of microbe-glial communication are unclear. Here, we tested the hypothesis that enteric glia express the pattern recognition receptor stimulator of interferon genes (STING) and communicate with the microbiome through this pathway to modulate gastrointestinal inflammation. Methods In situ transcriptional labeling and immunohistochemistry were used to examine STING and IFNβ expression in enteric neurons and glia.

Porphyromonas gingivalis promotes malignancy and chemo-resistance via GSK3β-mediated mitochondrial oxidative phosphorylation in human esophageal squamous cell carcinoma

Our prior studies have confirmed that long-term colonization of Porphyromonas gingivalis (Pg) and overexpression of the inflammatory factor glycogen synthase kinase 3β (GSK3β) promote the malignant evolution of esophageal squamous cell carcinoma (ESCC). We aimed to investigate the functional mechanism by which Pg could promote ESCC malignancy and chemo-resistance through GSK3β-mediated mitochondrial oxidative phosphorylation (mtOXPHOS), and the clinical implications.

Severe Acute Respiratory Syndrome Coronavirus 2 Vasculopathy in a Syrian Golden Hamster Model

Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Here, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19.

Enhanced immune complex formation in the lungs of patients with dermatomyositis

Interstitial lung disease is frequently comorbid with dermatomyositis and has a poor prognosis, especially in patients with the anti-melanoma differentiation-associated gene 5 (MDA5) autoantibody. However, the pathogenesis of dermatomyositis-related interstitial lung disease remains unclear.We examined 18 and 19 patients with dermatomyositis-related interstitial lung disease and idiopathic pulmonary fibrosis (control), respectively.

The chemerin/CMKLR1 axis regulates intestinal graft-versus-host disease

Gastrointestinal graft-versus-host disease (GvHD) is a major cause of mortality and morbidity following allogeneic bone marrow transplantation (allo-BMT). Chemerin is a chemotactic protein that recruits leukocytes to inflamed tissues by interacting with ChemR23/CMKLR1, a chemotactic receptor expressed by leukocytes, including macrophages. During acute GvHD, chemerin plasma levels were strongly increased in allo-BM-transplanted mice. The role of the chemerin/CMKLR1 axis in GvHD was investigated using Cmklr1-KO mice.

Inter-axonal molecular crosstalk via Lumican proteoglycan sculpts murine cervical corticospinal innervation by distinct subpopulations

How CNS circuits sculpt their axonal arbors into spatially and functionally organized domains is not well understood. Segmental specificity of corticospinal connectivity is an exemplar for such regional specificity of many axon projections. Corticospinal neurons (CSN) innervate spinal and brainstem targets with segmental precision, controlling voluntary movement. Multiple molecularly distinct CSN subpopulations innervate the cervical cord for evolutionarily enhanced precision of forelimb movement.

Bronchoalveolar Lavage Fluid Eosinophilia Associates with Chronic Lung Allograft Dysfunction Risk: A Multicenter Study

Chronic lung allograft dysfunction (CLAD) is the leading cause of death among lung transplant recipients. Eosinophils, effector cells of type 2 immunity, are implicated in the pathobiology of many lung diseases and prior studies suggest their presence associates with acute rejection or CLAD after lung transplantation.Does histological allograft injury or respiratory microbiology correlate with the presence of eosinophils in bronchoalveolar lavage fluid (BALF)?

Muscle stem cells contribute to long-term tissue repletion following surgical sepsis

Over the past decade, advances in sepsis identification and management have resulted in decreased sepsis mortality. This increase in survivorship has highlighted a new clinical obstacle: chronic critical illness (CCI), for which there are no effective treatment options. Up to half of sepsis survivors suffer from CCI, which can include multi-organ dysfunction, chronic inflammation, muscle wasting, physical and mental disabilities, and enhanced frailty.

Murine models of HRAS-mediated cutaneous skeletal hypophosphatemia syndrome suggest bone as the FGF23 excess source

Cutaneous Skeletal Hypophosphatemia Syndrome (CSHS) is a mosaic RASopathy characterized by the association of dysplastic skeletal lesions, congenital skin nevi of epidermal and/or melanocytic origin, and fibroblast growth factor-23 (FGF23)-mediated hypophosphatemia. The primary physiological source of circulating FGF23 is bone cells. However, several reports have suggested skin lesions as the source of excess FGF23 in CSHS.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com