RNAscope 2.0 Assay

Cited1 Deficiency Suppresses Intestinal Tumorigenesis.

Conditional deletion of Apc in the murine intestine alters crypt-villus architecture and function. This process is accompanied by multiple changes in gene expression, including upregulation of Cited1, whose role in colorectal carcinogenesis is unknown. Here we explore the relevance of Cited1 to intestinal tumorigenesis. We crossed Cited1 null mice with Apc(Min/+) and AhCre(+)Apc(fl/fl) mice and determined the impact of Cited1 deficiency on tumour growth/initiation including tumour multiplicity, cell proliferation, apoptosis and the transcriptome.

Papillary Squamous Cell Carcinoma of the Head and Neck: Clinicopathologic and Molecular Features with Special Reference to Human Papillomavirus.

A relationship between human papillomavirus (HPV) infection and papillary squamous cell carcinoma (PSCC) has been suggested. However, to date, no studies have thoroughly and directly evaluated for transcriptional activity of the virus or the clinicopathologic significance of HPV-positive PSCC. Forty-eight cases of PSCC were retrieved from our surgical pathology database and were reviewed by 4 study pathologists, with tumors defined as SCC with a significant component of papillary growth in the tumor. Immunohistochemical analysis for p16 and p53 was performed.

In situ analysis of HER2 mRNA in gastric carcinoma: comparison with fluorescence in situ hybridization, dual-color silver in situ hybridization, and immunohistochemistry. 

The importance of anti-HER2 therapy has focused attention on the ability of clinical assays to correctly assign HER2 amplification status. In the present study, we evaluated HER2 mRNA expression using a new mRNA in situ detection technique called RNAscope in 211 cases of formalin-fixed, paraffin-embedded gastric carcinoma. In addition, we compared the results with the conventional methods of immunohistochemistry, fluorescence in situ hybridization, and dual-color silver in situ hybridization.

Distribution of LGR5+ Cells and Associated Implications during the Early Stage of Gastric Tumorigenesis.

Lgr5 was identified as a promising gastrointestinal tract stem cell marker in mice. Lineage tracing indicates that Lgr5(+) cells may not only be the cells responsible for the origin of tumors; they may also be the so-called cancer stem cells. In the present study, we investigated the presence of Lgr5(+) cells and their biological significance in normal human gastric mucosa and gastric tumors. RNAscope, a newly developed RNA in situ hybridization technique, specifically labeled Lgr5(+) cells at the basal glands of the gastric antrum.

Expression of Toll-Like Receptor 2 in Glomerular Endothelial Cells and Promotion of Diabetic Nephropathy by Porphyromonas gingivalis Lipopolysaccharide

The toll-like receptor (TLR) has been suggested as a candidate cause for diabetic nephropathy. Recently, we have reported the TLR4 expression in diabetic mouse glomerular endothelium. The study here investigates the effects of the periodontal pathogen Porphyromonas gingivalis lipopolysaccharide (LPS) which is a ligand for TLR2 and TLR4 in diabetic nephropathy. In laser-scanning microscopy of glomeruli of streptozotocin- and a high fat diet feed-induced type I and type II diabetic mice, TLR2 localized on the glomerular endothelium and proximal tubule epithelium.

A novel RT‐PCR method for quantification of human papillomavirus transcripts in archived tissues and its application in oropharyngeal cancer prognosis. 

Oropharyngeal squamous cell carcinoma (SCC) is strongly associated with human papillomavirus (HPV) infection, which is distinctively different from most other head and neck cancers. However, a robust quantitative reverse transcription PCR (RT-qPCR) method for comprehensive expression profiling of HPV genes in routinely fixed tissues has not been reported. To address this issue, we have established a new real-time RT-PCR method for the expression profiling of the E6 and E7 oncogenes from 13 high-risk HPV types.

The effects of unilateral truncal vagotomy on gastric carcinogenesis in hypergastrinemic Japanese female cotton rats.

The stomach is innervated by the vagal nerve. Several studies have demonstrated that the vagal nerve has a trophic effect on the rat oxyntic mucosa and that the trophic effect of hypergastrinemia is dependent on intact vagal innervation. The effect of vagal denervation on gastric carcinogenesis has been examined in Mastomys natalensis and hypergastrinemic transgenic INS-GAS mice, with no effect of unilateral vagotomy in Mastomys but an anti-carcinogenic effect in INS-GAS mice.

Validation of esophageal squamous cell carcinoma candidate genes from high-throughput transcriptomic studies.

In a recent study, a unique gene expression signature was observed when comparing esophageal squamous cell carcinoma (ESCC) epithelial cells to normal esophageal epithelial cells using laser capture microdissection (LCM) and cDNA microarray technology. To validate the expression of several intriguing genes from that study (KRT17, cornulin, CD44, and EpCAM), we employed two new technologies, expression microdissection (xMD) for high-throughput microdissection facilitating protein analysis and RNAscope for the evaluation of low abundant transcripts in situ.

Detection of HPV infection in head and neck squamous cell carcinoma: a practical proposal.

Detecting human papillomavirus (HPV) infection in head and neck squamous cell carcinoma (HNSCC) is clinically relevant, but there is no agreement about the most appropriate methodology. We have studied 64 oropharyngeal carcinomas using p16 immunohistochemistry, HPV DNA in situ hybridisation (ISH) and HPV DNA polymerase chain reaction (PCR) followed by pyrosequencing. We have also evaluated a new assay, RNAscope, designed to detect HPV E6/E7 RNA transcripts. Using a threshold of 70 % labelled tumour cells, 21 cases (32.8 %) were p16 positive.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com