RNAscope 2.0 Assay

Functional Expression of FSH Receptor in Endometriotic Lesions.

Abstract

CONTEXT:

FSH receptor (FSHR), besides being expressed in gonads, is also expressed in some extragonadal tissues at low levels.

OBJECTIVE:

We examined the functional expression of FSHR in different types of endometriotic lesions.

DESIGN:

Extensive studies were carried out to detect functional FSHR expression and FSH-stimulated estrogen production in ovarian endometriomas and recto-vaginal endometriotic nodules (RVEN). Normal endometrium, ovary, and myometrium tissues from nonpregnant cycling women served as controls.

SETTINGS:

Programmed death-ligand-1 expression in advanced gastric cancer detected with RNA in situ hybridization and its clinical significance.

PD-L1 expression may be a predictive marker for anti-PD-1 therapeutic efficacy. No standard detection method of PD-L1 expression was available for advanced gastric cancer (AGC), which would be investigated in this study using RNA in situ hybridization and immunohistochemistry. Patients (N = 165) with AGC treated at Peking University Cancer Hospital from October 2008 to February 2013 were retrospectively studied. Tissue samples prior to chemotherapy were assessed for PD-L1 expression using RNA in situ hybridization (an RNAscope assay) and immunohistochemistry (IHC).

The local expression and trafficking of tyrosine hydroxylase mRNA in the axons of sympathetic neurons.

Synthesis and regulation of catecholamine neurotransmitters in the central nervous system are implicated in the pathogenesis of a number of neuropsychiatric disorders. To identify factors that regulate the presynaptic synthesis of catecholamines, we tested the hypothesis that the rate-limiting enzyme of the catecholamine biosynthetic pathway, tyrosine hydroxylase (TH), is locally synthesized in axons and presynaptic nerve terminals of noradrenergic neurons.

Analytic Validation of RNA In Situ Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer.

Abstract

PURPOSE:

RNA expression of androgen receptor splice variants may be a biomarker of resistance to novel androgen deprivation therapies in castrate resistant prostate cancer (CRPC). We analytically validated an RNA in situ hybridization (RISH) assay for total AR and AR-V7 for use in formalin fixed paraffin embedded (FFPE) prostate tumors.

EXPERIMENTAL DESIGN:

Loss of P53 Function Activates JAK2–STAT3 Signaling to Promote Pancreatic Tumor Growth, Stroma Modification, and Gemcitabine Resistance in Mice and is Associated With Patient Survival

Abstract

BACKGROUND & AIMS:

One treatment strategy for pancreatic ductal adenocarcinoma is to modify, rather than deplete, the tumor stroma. Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) is associated with progression of pancreatic and other solid tumors. We investigated whether loss of P53 function contributes to persistent activation of STAT3 and modification of the pancreatic tumor stroma in patients and mice.

METHODS:

Glucagon-Like Peptide-1 Receptor Expression in Normal and Neoplastic Human Pancreatic Tissues.

Abstract

OBJECTIVES:

Studies have proposed pro-oncogenic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists in the pancreas by promoting GLP-1R overactivation in pancreatic cells. However, the expression of GLP-1R in normal and neoplastic pancreatic cells remains poorly defined, and reliable methods for detecting GLP-1R in tissue specimens are needed.

METHODS:

Primate neural retina upregulates IL-6 and IL-10 in response to a herpes simplex vector suggesting the presence of a pro-/anti-inflammatory axis.

Injection of herpes simplex virus vectors into the vitreous of primate eyes induces an acute, transient uveitis. The purpose of this study was to characterize innate immune responses of macaque neural retina tissue to the herpes simplex virus type 1-based gene delivery vector hrR3. PCR array analysis demonstrated the induction of the pro-inflammatory cytokine IL-6, as well as the anti-inflammatory cytokine IL-10, following hrR3 exposure. Secretion of IL-6 was detected by ELISA and cone photoreceptors and Muller cells were the predominant IL-6 positive cell types.

ApolipoproteinL1 is expressed in papillary thyroid carcinomas.

The apolipoprotein L (apoL) family has not yet been ascribed any definite patho-physiological function although the conserved BH3 protein domain suggests a role in programmed cell death. As repression of the regular apoptotic program is considered a hallmark of tumor progression, we investigated apoL expression in cancer. We show that the levels of one member of the family, apolipoprotein L1 (apoL1) is higher in papillary thyroid carcinoma compared to normal tissue.

cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth.

The LKB1 tumor suppressor gene is frequently mutated and inactivated in non-small cell lung cancer (NSCLC). Loss of LKB1 promotes cancer progression and influences therapeutic responses in preclinical studies; however, specific targeted therapies for lung cancer with LKB1 inactivation are currently unavailable. Here, we have identified a long noncoding RNA (lncRNA) signature that is associated with the loss of LKB1 function. We discovered that LINC00473 is consistently the most highly induced gene in LKB1-inactivated human primary NSCLC samples and derived cell lines.

Nuclear localization of glutamate-cysteine ligase is associated with proliferation in head and neck squamous cell carcinoma

Glutathione (GSH) is the keystone of the cellular response toward oxidative stress. Elevated GSH content correlates with increased resistance to chemotherapy and radiotherapy of head and neck (HN) tumors. The purpose of the present cross‑sectional study was to evaluate whether the expression of glutamate‑cysteine ligase (GCL) accounts for the increased GSH availability observed in HN squamous cell carcinoma (SCC).

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com