Wnts produced by Osterix-expressing osteolineage cells regulate their proliferation and differentiation.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5262-71.
Tan SH, Senarath-Yapa K, Chung MT, Longaker MT, Wu JY, Nusse R.
Wnt signaling is a critical regulator of bone development, but the identity and role of the Wnt-producing cells are still unclear. We addressed these questions through in situ hybridization, lineage tracing, and genetic experiments. First, we surveyed the expression of all 19 Wnt genes and Wnt target gene Axin2 in the neonatal mouse bone by in situ hybridization, and demonstrated--to our knowledge for the first time--that Osterix-expressing cells coexpress Wnt and Axin2. To track the behavior and cell fate of Axin2-expressing osteolineage cells, we performed lineage tracing and showed that they sustain bone formation over the long term. Finally, to examine the role of Wnts produced by Osterix-expressing cells, we inhibited Wnt secretion in vivo, and observed inappropriate differentiation, impaired proliferation, and diminished Wnt signaling response. Therefore, Osterix-expressing cells produce their own Wnts that in turn induce Wnt signaling response, thereby regulating their proliferation and differentiation.
Prostate adenocarcinomas aberrantly expressing p63 are molecularly distinct from usual-type prostatic adenocarcinomas.
Mod Pathol. 2015 Mar;28(3):446-56.
Tan HL, Haffner MC, Esopi DM, Vaghasia AM, Giannico GA, Ross HM, Ghosh S, Hicks JL, Zheng Q, Sangoi AR, Yegnasubramanian S, Osunkoya AO, De Marzo AM, Epstein JI, Lotan TL.
We have described a rare group of prostate adenocarcinomas that show aberrant expression of p63, a protein strongly expressed in prostatic basal cells and absent from usual-type acinar prostate cancers. The partial basal-like immunophenotype of these tumors is intriguing in light of the persistent debate surrounding the cell-of-origin for prostate cancer; however, their molecular phenotype is unknown. We collected 37 of these tumors on radical prostatectomy and biopsy and assessed subsets for a diverse panel of molecular markers. The majority of p63-expressing tumors were positive for the ΔNp63 isoform (6/7) by immunofluorescence and p63 mRNA (7/8) by chromogenic in situ hybridization. Despite p63 positivity, these tumors uniformly expressed luminal-type cytokeratin proteins such as CK18 (13/13), CK8 (8/8), and markers of androgen axis signaling commonly seen in luminal cells, including androgen receptor (10/11), NKX3.1 (8/8), and prostein (12/13). Conversely, basal cytokeratins such as CK14 and CK15 were negative in all cases (0/8) and CK5/6 was weakly and focally positive in 36% (4/11) of cases. Pluripotency markers including β-catenin, Oct4, and c-kit were negative in p63-expressing tumors (0/11). Despite nearly universal expression of androgen receptor and downstream androgen signaling targets, p63-expressing tumors lacked ERG rearrangements by fluorescence in situ hybridization (0/14) and ERG protein expression (0/37). No tumors expressed SPINK1 or showed PTEN protein loss (0/19). Surprisingly, 74% (14/19) of p63-expressing tumors expressed GSTP1 protein at least focally, and 33% (2/6) entirely lacked GSTP1 CpG island hypermethylation by bisulfite sequencing. In contrast to usual prostatic adenocarcinomas, prostate tumors with p63 expression show a mixed luminal/basal immunophenotype, uniformly lack ERG gene rearrangement, and frequently express GSTP1. These data strongly suggest that p63-expressing prostate tumors represent a molecularly distinct subclass and further study of this rare tumor type may yield important insights into the role of p63 in prostatic biology and the prostate cancer cell-of-origin.
Pharmacological stimulation of Edar signaling in the adult enhances sebaceous gland size and function.
J Invest Dermatol. 2015 Feb;135(2):359-68.
Kowalczyk-Quintas C, Schuepbach-Mallepell S, Willen L, Smith TK, Huttner K, Kirby N, Headon DJ, Schneider P.
Impaired ectodysplasin A (EDA) receptor (EDAR) signaling affects ectodermally derived structures including teeth, hair follicles, and cutaneous glands. The X-linked hypohidrotic ectodermal dysplasia (XLHED), resulting from EDA deficiency, can be rescued with lifelong benefits in animal models by stimulation of ectodermal appendage development with EDAR agonists. Treatments initiated later in the developmental period restore progressively fewer of the affected structures. It is unknown whether EDAR stimulation in adults with XLHED might have beneficial effects. In adult Eda mutant mice treated for several weeks with agonist anti-EDAR antibodies, we find that sebaceous gland size and function can be restored to wild-type levels. This effect is maintained upon chronic treatment but reverses slowly upon cessation of treatment. Sebaceous glands in all skin regions respond to treatment, although to varying degrees, and this is accompanied in both Eda mutant and wild-type mice by sebum secretion to levels higher than those observed in untreated controls. Edar is expressed at the periphery of the glands, suggesting a direct homeostatic effect of Edar stimulation on the sebaceous gland. Sebaceous gland size and sebum production may serve as biomarkers for EDAR stimulation, and EDAR agonists may improve skin dryness and eczema frequently observed in XLHED.
Clinicopathologic correlations of the BRAF(V600E) mutation, BRAF V600E immunohistochemistry, and BRAF RNA in situ hybridization in papillary thyroid carcinoma.
Pathol Res Pract. 2015 Feb;211(2):162-70.
Jung YY, Yoo JH, Park ES, Kim MK, Lee TJ, Cho BY, Chung YJ, Kang KH, Ahn HY, Kim HS.
BACKGROUND: The BRAF(V600E) mutation is the most common genetic alteration in papillary thyroid carcinoma (PTC). The aim of this study is to analyze the clinicopathologic correlations of the BRAF(V600E) mutation, BRAF V600E immunohistochemistry (IHC) and BRAF RNA in situ hybridization (ISH) in PTC. METHODS: This study included 467 patients with PTC who underwent surgical resection. We studied the BRAF(V600E) mutation using real-time PCR and BRAF V600E and BRAF RNA ISH using tissue microarray (TMA). RESULTS: The frequencies of a positive BRAF(V600E) mutation by real-time PCR, positive BRAF V600E IHC, and high BRAF RNA ISH were 84%, 86%, and 70%, respectively, in PTC. Conventional PTC had higher positive rates in all three tests than other histologic types. The BRAF(V600E) mutation, BRAF V600E IHC, low ΔCt, and high BRAF RNA ISH were significantly associated with lymph node metastasis. The BRAF(V600E) mutation was significantly associated with positive immunostaining for BRAF V600E mutant protein (P<0.001) overall, with high BRAF RNA ISH only in the follicular variant (P=0.035). No significant correlation was noted between BRAF V600E IHC and BRAF RNA ISH. The sensitivity of BRAF V600E IHC for the BRAF(V600E) mutation was 95%, and the specificity was 61% overall, 96% and 54% in the conventional type, and 85% and 70% in the follicular variant. CONCLUSIONS: Our results showed that positive BRAF V600E IHC significantly correlated with the BRAF(V600E) mutation. This suggests its clinical utility as a screening tool for the BRAF(V600E) mutation. In addition, a high BRAF RNA ISH score could be a candidate marker of aggressive behavior in BRAF(V600E) mutation-positive cases of PTC.
Persistence of Human Papillomavirus, Overexpression of p53, and Outcomes of Patients After Endoscopic Ablation of Barrett's Esophagus.
Clin Gastroenterol Hepatol. 2014 Nov 21.
Rajendra S, Wang B, Pavey D, Sharma P, Yang T, Lee CS, Gupta N, Ball MJ, Gill RS, Wu X.
We investigated the role of high-risk human papillomavirus (hr-HPV) in patients with Barrett's dysplasia and adenocarcinoma (EAC). Clearance vs persistence of HPV (DNA, E6 or E7 mRNA, and p16INK4A protein) and overexpression or mutation of p53 were determined for 40 patients who underwent endotherapy for Barrett's dysplasia or EAC. After ablation, dysplasia or neoplasia was eradicated in 34 subjects (24 squamous, 10 intestinal metaplasia). Six patients had detectable lesions after treatment; 2 were positive for transcriptionally active hr-HPV, and 4 had overexpression of p53. Before endotherapy, 15 patients had biologically active hr-HPV, 13 cleared the infection with treatment, and dysplasia or EAC was eliminated from 12 patients. One patient who cleared HPV after ablation acquired a p53 mutation, and their cancer progressed. Of 13 patients with overexpression of p53 before treatment, 10 cleared the p53 abnormality after ablation with eradication of dysplasia or neoplasia, whereas 3 of 13 had persistent p53 mutation-associated dysplasia after endotherapy (P = .004). Immunohistochemical and sequence analyses of p53 produced concordant results for 36 of 40 samples (90%). Detection of dysplasia or neoplasia after treatment was associated with HPV persistence or continued p53 overexpression.
Guanine nucleotide-binding protein 1 is one of the key molecules contributing to cancer cell radioresistance.
Cancer Sci. 2014 Oct;105(10):1351-9.
Fukumoto M, Amanuma T, Kuwahara Y, Shimura T, Suzuki M, Mori S, Kumamoto H, Saito Y, Ohkubo Y, Duan Z, Sano K, Oguchi T, Kainuma K, Usami S, Kinoshita K, Lee I, Fukumoto M.
Standard fractionated radiotherapy for the treatment of cancer consists of daily irradiation of 2-Gy X-rays, 5 days a week for 5-8 weeks. To understand the characteristics of radioresistant cancer cells and to develop more effective radiotherapy, we established a series of novel, clinically relevant radioresistant (CRR) cells that continue to proliferate with 2-Gy X-ray exposure every 24 h for more than 30 days in vitro. We studied three human and one murine cell line, and their CRR derivatives. Guanine nucleotide-binding protein 1 (GBP1) gene expression was higher in all CRR cells than their corresponding parental cells. GBP1 knockdown by siRNA cancelled radioresistance of CRR cells in vitro and in xenotransplanted tumor tissues in nude mice. The clinical relevance of GBP1 was immunohistochemically assessed in 45 cases of head and neck cancer tissues. Patients with GBP1-positive cancer tended to show poorer response to radiotherapy. We recently reported that low dose long-term fractionated radiation concentrates cancer stem cells (CSCs). Immunofluorescence staining of GBP1 was stronger in CRR cells than in corresponding parental cells. The frequency of Oct4-positive CSCs was higher in CRR cells than in parental cells, however, was not as common as GBP1-positive cells. GBP1-positive cells were radioresistant, but radioresistant cells were not necessarily CSCs. We concluded that GBP1 overexpression is necessary for the radioresistant phenotype in CRR cells, and that targeting GBP1-positive cancer cells is a more efficient method in conquering cancer than targeting CSCs.
PLoS One. 2015 Mar 20;10(3):e0120120.
Grabinski TM, Kneynsberg A, Manfredsson FP, Kanaan NM.
PMID: 25794171 | DOI: 10.1371/journal.pone.0120120.
In situ hybridization (ISH) is an extremely useful tool for localizing gene expression and changes in expression to specific cell populations in tissue samples across numerous research fields. Typically, a research group will put forth significant effort to design, generate, validate and then utilize in situ probes in thin or ultrathin paraffin embedded tissue sections. While combining ISH and IHC is an established technique, the combination of RNAscope ISH, a commercially available ISH assay with single transcript sensitivity, and IHC in thick free-floating tissue sections has not been described. Here, we provide a protocol that combines RNAscope ISH with IHC in thick free-floating tissue sections from the brain and allows simultaneous co-localization of genes and proteins in individual cells. This approach works well with a number of ISH probes (e.g. small proline-rich repeat 1a, βIII-tubulin, tau, and β-actin) and IHC antibody stains (e.g. tyrosine hydroxylase, βIII-tubulin, NeuN, and glial fibrillary acidic protein) in rat brain sections. In addition, we provide examples of combining ISH-IHC dual staining in primary neuron cultures and double-ISH labeling in thick free-floating tissue sections from the brain. Finally, we highlight the ability of RNAscope to detect ectopic DNA in neurons transduced with viral vectors. RNAscope ISH is a commercially available technology that utilizes a branched or "tree" in situ method to obtain ultrasensitive, single transcript detection. Immunohistochemistry is a tried and true method for identifying specific protein in cell populations. The combination of a sensitive and versatile oligonucleotide detection method with an established and versatile protein assay is a significant advancement in studies using free-floating tissue sections.
Ramos AD, Andersen RE, Liu SJ, Nowakowski TJ, Hong SJ, Gertz CC, Salinas RD, Zarabi H, Kriegstein AR, Lim DA.
PMID: 25800779 | DOI: 10.1016/j.stem.2015.02.007
While thousands of long noncoding RNAs (lncRNAs) have been identified, few lncRNAs that control neural stem cell (NSC) behavior are known. Here, we identify Pinky (Pnky) as a neural-specific lncRNA that regulates neurogenesis from NSCs in the embryonic and postnatal brain. In postnatal NSCs, Pnky knockdown potentiates neuronal lineage commitment and expands the transit-amplifying cell population, increasing neuron production several-fold. Pnky is evolutionarily conserved and expressed in NSCs of the developing human brain. In the embryonic mouse cortex, Pnky knockdown increases neuronal differentiation and depletes the NSC population. Pnky interacts with the splicing regulator PTBP1, and PTBP1 knockdown also enhances neurogenesis. In NSCs, Pnky and PTBP1 regulate the expression and alternative splicing of a core set of transcripts that relates to the cellular phenotype. These data thus unveil Pnky as a conserved lncRNA that interacts with a key RNA processing factor and regulates neurogenesis from embryonic and postnatal NSC populations.
Abedalthagafi MS, Wenya Linda Bi WL, Merrill PH, Gibson WJ, Rose MF, Du Z, Francis JM, Du R, Dunn IF, Ligon AH, Beroukhim R, Santagata S.
PMID: 25963524 | DOI: 10.1016/j.cancergen.2015.03.005
While WHO grade I meningiomas are considered benign, patients with WHO grade III meningiomas have very high mortality. The principles underlying tumor progression in meningioma are largely unknown yet a detailed understanding of these mechanisms will be required for effective management of patients with these high-grade, lethal tumors. We present a case of an intraventricular meningioma that at first presentation displayed remarkable morphologic heterogeneity – comprised of distinct regions independently fulfilling histopathologic criteria for WHO grade I, II and III designations. The lowest-grade regions had classic meningothelial features while the highest grade regions were markedly dedifferentiated. While progression in meningiomas is generally observed during recurrence following radiation and systemic medical therapies the current case offers us a snapshot into histologic progression and intratumor heterogeneity in a native, pre-treatment context. Using whole exome sequencing (WES) and high resolution array comparative genomic hybridization (aCGH) we observe marked genetic heterogeneity between the various areas. Notably, in the higher grade regions we find increased aneuploidy with progressive loss of heterozygosity, the emergence of mutations in the TERT promoter and compromise of ARID1A. These findings provide new insights into intratumoral heterogeneity in the evolution of malignant phenotypes in anaplastic meningiomas and potential pathways of malignant progression.
J Invest Dermatol. 2015 Mar;135(3):701-9.
Chen J, Laclef C, Moncayo A, Snedecor ER, Yang N, Li L, Takemaru K, Paus R, Schneider-Maunoury S, Clark RA.
PMID: 25398052 | DOI: 10.1038/jid.2014.483.
The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgrip1l gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.
Dis Model Mech. 2015 Mar 11.
Hubmacher D, Wang LW, Mecham RP, Reinhardt DP, Apte SS.
PMID: 25762570 | DOI: dmm.017046.
Mutations in the secreted glycoprotein ADAMTSL2 cause recessive geleophysic dysplasia (GD) in humans and Musladin-Lueke syndrome (MLS) in dogs. GD is a severe, often lethal condition presenting with short stature, brachydactyly, stiff skin, joint contractures, tracheal-bronchial stenosis, and cardiac valve anomalies, whereas MLS is non-lethal and characterized by short stature and severe skin fibrosis. Although most mutations of fibrillin-1 (FBN1) cause Marfan syndrome (MFS), a microfibril disorder leading to transforming growth factor-β (TGFβ) dysregulation, domain-specific FBN1 mutations result in dominant GD. ADAMTSL2 was previously shown to bind FBN1 and latent TGFβ-binding protein-1 (LTBP1). Here, we investigated mice with targeted Adamtsl2 inactivation as a new model for GD. An intragenic lacZ reporter in these mice showed that ADAMTSL2 was produced exclusively by bronchial smooth muscle cells during embryonic lung development. Adamtsl2-/- mice, which died at birth, had severe bronchial epithelial dysplasia with abnormal glycogen-rich inclusions in bronchial epithelium resembling cellular anomalies described previously in GD. An increase in microfibrils in the bronchial wall was associated with increased FBN2 and microfibril-associated glycoprotein-1 (MAGP1) staining, whereas LTBP1 staining was increased in bronchial epithelium. ADAMTSL2 was shown to bind directly to FBN2 with an affinity comparable to FBN1. The observed ECM alterations were associated with increased bronchial epithelial TGFβ signaling at 17.5 days of gestation, yet treatment with TGFβ-neutralizing antibody did not correct the epithelial dysplasia. These investigations reveal a novel function of ADAMTSL2 in modulating microfibril formation, and a previously unsuspected association with FBN2. Our studies suggest that the bronchial epithelial dysplasia accompanying microfibril dysregulation in Adamtsl2-/- mice is not remediable by TGFβ neutralization, and thus may be mediated by other mechanisms.
Development. 2015 Mar 10.
Campbell PD, Chao JA, Singer RH, Marlow FL.
PMID: 25758462 | DOI: dev.118968.
Live imaging of transcription and RNA dynamics has been successful in cultured cells and tissues of vertebrates but is challenging to accomplish in vivo. The zebrafish offers important advantages to study these processes - optical transparency during embryogenesis, genetic tractability and rapid development. Therefore, to study transcription and RNA dynamics in an intact vertebrate organism, we have adapted the MS2 RNA-labeling system to zebrafish. By using this binary system to coexpress a fluorescent MS2 bacteriophage coat protein (MCP) and an RNA of interest tagged with multiple copies of the RNA hairpin MS2-binding site (MBS), live-cell imaging of RNA dynamics at single RNA molecule resolution has been achieved in other organisms. Here, using a Gateway-compatible MS2 labeling system, we generated stable transgenic zebrafish lines expressing MCP, validated the MBS-MCP interaction and applied the system to investigate zygotic genome activation (ZGA) and RNA localization in primordial germ cells (PGCs) in zebrafish. Although cleavage stage cells are initially transcriptionally silent, we detect transcription of MS2-tagged transcripts driven by the βactin promoter at ∼3-3.5 h post-fertilization, consistent with the previously reported ZGA. Furthermore, we show that MS2-tagged nanos3 3'UTR transcripts localize to PGCs, where they are diffusely cytoplasmic and within larger cytoplasmic accumulations reminiscent of those displayed by endogenous nanos3. These tools provide a new avenue for live-cell imaging of RNA molecules in an intact vertebrate. Together with new techniques for targeted genome editing, this system will be a valuable tool to tag and study the dynamics of endogenous RNAs during zebrafish developmental processes.