Mol Cancer Res.
2017 Jan 23
Guner G, Sirajuddin P, Zheng Q, Bai B, Brodie A, Liu H, Af Hallstrom T, Kulac I, Laiho M, De Marzo AM.
PMID: 28119429 | DOI: 10.1158/1541-7786.MCR-16-0246
Cell Signal.
2017 Jan 23
Hot B, Valnohova J, Arthofer E, Simon K, Shin J, Uhlén M, Kostenis E, Mulder J, Schulte G.
PMID: 28126591 | DOI: 10.1016/j.cellsig.2017.01.023
Among the 10 Frizzled (FZD) isoforms belonging to the Class F of G protein-coupled receptors (GPCRs), FZD10 remains the most enigmatic. FZD10 shows homology to FZD4 and FZD9 and was previously implicated in both β-catenin-dependent and -independent signalling. In normal tissue, FZD10 levels are generally very low; however, its upregulation in synovial carcinoma has attracted some attention for therapy. Our findings identify FZD10 as a receptor interacting with and signalling through the heterotrimeric G protein Gα13 but not Gα12, Gαi1, GαoA,Gαs, or Gαq. Stimulation with the FZD agonist WNT induced the dissociation of the Gα13 protein from FZD10, and led to global Gα12/13-dependent cell changes assessed by dynamic mass redistribution measurements. Furthermore, we show that FZD10 mediates Gα12/13activation-dependent induction of YAP/TAZ transcriptional activity. In addition, we show a distinct expression of FZD10 in embryonic CNS endothelial cells at E11.5-E14.5. Given the well-known importance of Gα13 signalling for the development of the vascular system, the selective expression of FZD10 in brain vascular endothelial cells points at a potential role of FZD10-Gα13 signalling in CNS angiogenesis.
Nat Cell Biol.
2017 Jan 23
Li C, Wang S, Xing Z, Lin A, Liang K, Song J, Hu Q, Yao J, Chen Z, Park PK, Hawke DH, Zhou J, Zhou Y, Zhang S, Liang H, Hung MC, Gallick GE, Han L, Lin C, Yang L.
PMID: 28114269 | DOI: 10.1038/ncb3464
Bone metastases remain a serious health concern because of limited therapeutic options. Here, we report that crosstalk between ROR1-HER3 and the Hippo-YAP pathway promotes breast cancer bone metastasis in a long noncoding RNA-dependent fashion. Mechanistically, the orphan receptor tyrosine kinase ROR1 phosphorylates HER3 at a previously unidentified site Tyr1307, following neuregulin stimulation, independently of other ErbB family members. p-HER3 Tyr1307 recruits the LLGL2-MAYA-NSUN6 RNA-protein complex to methylate Hippo/MST1 at Lys59. This methylation leads to MST1 inactivation and activation of YAP target genes in tumour cells, which elicits osteoclast differentiation and bone metastasis. Furthermore, increased ROR1, p-HER3 Tyr1307 and MAYA levels correlate with tumour metastasis and unfavourable outcomes. Our data provide insights into the mechanistic regulation and linkage of the ROR1-HER3 and Hippo-YAP pathway in a cancer-specific context, and also imply valuable therapeutic targets for bone metastasis and possible therapy-resistant tumours.
Nat Neurosci.
2017 Jan 23
Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC.
PMID: 28114296 | DOI: 10.1038/nn.4486
Place cells in the CA1 region of the hippocampus express location-specific firing despite receiving a steady barrage of heterogeneously tuned excitatory inputs that should compromise output dynamic range and timing. We examined the role of synaptic inhibition in countering the deleterious effects of off-target excitation. Intracellular recordings in behaving mice demonstrate that bimodal excitation drives place cells, while unimodal excitation drives weaker or no spatial tuning in interneurons. Optogenetic hyperpolarization of interneurons had spatially uniform effects on place cell membrane potential dynamics, substantially reducing spatial selectivity. These data and a computational model suggest that spatially uniform inhibitory conductance enhances rate coding in place cells by suppressing out-of-field excitation and by limiting dendritic amplification. Similarly, we observed that inhibitory suppression of phasic noise generated by out-of-field excitation enhances temporal coding by expanding the range of theta phase precession. Thus, spatially uniform inhibition allows proficient and flexible coding in hippocampal CA1 by suppressing heterogeneously tuned excitation.
Open Biol.
2017 Jan 25
Hughes KR, Harnisch LC, Alcon-Giner C, Mitra S, Wright CJ, Ketskemety J, van Sinderen D, Watson AJ, Hall LJ.
PMID: 28123052 | DOI: 10.1098/rsob.160155
Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi-a process termed 'cell shedding'. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes.
Proc Natl Acad Sci U S A.
2017 Jan 23
Okamoto H, Cavino K, Na E, Krumm E, Kim SY, Cheng X, Murphy AJ, Yancopoulos GD, Gromada J.
PMID: 28115707 | DOI: 10.1073/pnas.1621069114
Inactivating mutations in the insulin receptor results in extreme insulin resistance. The resulting hyperglycemia is very difficult to treat, and patients are at risk for early morbidity and mortality from complications of diabetes. We used the insulin receptor antagonist S961 to induce severe insulin resistance, hyperglycemia, and ketonemia in mice. Using this model, we show that glucagon receptor (GCGR) inhibition with a monoclonal antibody normalized blood glucose and β-hydroxybutyrate levels. Insulin receptor antagonism increased pancreatic β-cell mass threefold. Normalization of blood glucose levels with GCGR-blocking antibody unexpectedly doubled β-cell mass relative to that observed with S961 alone and 5.8-fold over control. GCGR antibody blockage expanded α-cell mass 5.7-fold, and S961 had no additional effects. Collectively, these data show that GCGR antibody inhibition represents a potential therapeutic option for treatment of patients with extreme insulin-resistance syndromes.
J Neurosci.
2017 Jan 10
Hennessy ML, Corcoran A, Brust RD, Nattie EE, Dymecki S.
PMID: 28073937 | DOI: 10.1523/JNEUROSCI.2316-16.2016
Clin Cancer Res.
2016 Dec 29
Holdhoff M, Guner G, Rodriguez FJ, Hicks JL, Zheng Q, Forman MS, Ye X, Grossman SA, Meeker AK, Heaphy CM, Eberhart CG, De Marzo AM, Arav-Boger R.
PMID: 28034905 | DOI: 10.1158/1078-0432.CCR-16-1490
Mol Cell Endocrinol.
2017 Jan 25
Doroszko M, Chrusciel M, Belling K, Vuorenoja S, Dalgaard M, Leffers H, Nielsen HB, Huhtaniemi I, Toppari J, Rahman NA.
PMID: 28131743 | DOI: 10.1016/j.mce.2017.01.036
Specific inbred strains and transgenic inhibin-α Simian Virus 40 T antigen (inhα/Tag) mice are genetically susceptible to gonadectomy-induced adrenocortical neoplasias. We identified altered gene expression in prepubertally gonadectomized (GDX) inhα/Tag and wild-type (WT) mice. Besides earlier reported Gata4 and Lhcgr, we found up-regulated Esr1, Prlr-rs1, and down-regulated Grb10, Mmp24, Sgcd, Rerg, Gnas, Nfatc2, Gnrhr, Igf2 in inhα/Tag adrenal tumors. Sex-steroidogenic enzyme genes expression (Srd5a1, Cyp19a1) was up-regulated in tumors, but adrenal-specific steroidogenic enzyme (Cyp21a1, Cyp11b1, Cyp11b2) down-regulated. We localized novel Lhcgr transcripts in adrenal cortex parenchyma and in non-steroidogenic A cells, in GDX WT and in intact WT mice. We identified up-regulated Esr1 as a potential novel biomarker of gonadectomy-induced adrenocortical tumors in inhα/Tag mice presenting with an inverted adrenal-to-gonadal steroidogenic gene expression profile. A putative normal adrenal remodeling or tumor suppressor role of the down-regulated genes (e.g. Grb10, Rerg, Gnas, and Nfatc2) in the tumors remains to be addressed.
PLoS One
2017 Jan 27
Pillai SG, Zhu P, Siddappa CM, Adams DL, Li S, Makarova OV, Amstutz P, Nunley R, Tang CM, Watson MA, Aft RL.
PMID: 28129357 | DOI: 10.1371/journal.pone.0170761
J Neurosci.
2017 Jan 25
Caprioli D, Venniro M, Zhang M, Bossert JM, Warren BL, Hope BT, Shaham Y.
PMID: 28123032 | DOI: 10.1523/JNEUROSCI.3091-16.2017
J Neurosci.
2017 Jan 27
Khan S, Stott S, Chabrat A, Truckenbrodt AM, Spencer-Dene B, Nave KA, Guillemot F, Levesque M, Ang SL.
PMID: 28130357 | DOI: 10.1523/JNEUROSCI.2414-16.2016
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com