Chidamide induces apoptosis in DLBCL cells by suppressing the HDACs/STAT3/Bcl‑2 pathway
Molecular medicine reports
Zhang, H;Chi, F;Qin, K;Mu, X;Wang, L;Yang, B;Wang, Y;Bai, M;Li, Z;Su, L;Yu, B;
PMID: 33649847 | DOI: 10.3892/mmr.2021.11947
Diffuse large B‑cell lymphoma (DLBCL) is a highly heterogeneous malignant tumor type, and epigenetic modifications such as acetylation or deacetylation serve vital roles in its development. Chidamide, a novel histone deacetylase inhibitor, exerts an anticancer effect against various types of cancer. The present study aimed to evaluate the cellular effect of chidamide on a number of DLBCL cell lines and to investigate its underlying mechanism. The results demonstrated that chidamide induced the death of these cells in a concentration‑(0‑30 µmol/l) and time‑dependent (24‑72 h) manner, as determined using the Cell Counting Kit‑8 cell viability assay. Moreover, chidamide promoted cellular apoptosis, which was identified via flow cytometry and western blot analysis, with an increase in cleaved caspase‑3 expression and a decrease in Bcl‑2 expression. Chidamide treatment also decreased the expression level of STAT3 and its phosphorylation, which was accompanied by the downregulation of a class‑I histone deacetylase (HDAC) inhibitor, chidamide. Collectively, these data suggested that chidamide can be a potent therapeutic agent to treat DLBCL by inducing the apoptotic death of DLBCL cells by inhibiting the HDACs/STAT3/Bcl‑2 pathway.
Neuromodulatory effect of interleukin 1β in the dorsal raphe nucleus on individual differences in aggression
Takahashi, A;Aleyasin, H;Stavarache, MA;Li, L;Cathomas, F;Parise, LF;Lin, HY;Burnett, CJ;Aubry, A;Flanigan, ME;Brancato, A;Menard, C;Pfau, ML;Kana, V;Wang, J;Hodes, GE;Sasaki, T;Kaplitt, MG;Ogawa, S;McEwen, BS;Russo, SJ;
PMID: 33931727 | DOI: 10.1038/s41380-021-01110-4
Heightened aggressive behavior is considered as one of the central symptoms of many neuropsychiatric disorders including autism, schizophrenia, and dementia. The consequences of aggression pose a heavy burden on patients and their families and clinicians. Unfortunately, we have limited treatment options for aggression and lack mechanistic insight into the causes of aggression needed to inform new efforts in drug discovery and development. Levels of proinflammatory cytokines in the periphery or cerebrospinal fluid were previously reported to correlate with aggressive traits in humans. However, it is still unknown whether cytokines affect brain circuits to modulate aggression. Here, we examined the functional role of interleukin 1β (IL-1β) in mediating individual differences in aggression using a resident-intruder mouse model. We found that nonaggressive mice exhibit higher levels of IL-1β in the dorsal raphe nucleus (DRN), the major source of forebrain serotonin (5-HT), compared to aggressive mice. We then examined the effect of pharmacological antagonism and viral-mediated gene knockdown of the receptors for IL-1 within the DRN and found that both treatments consistently increased aggressive behavior of male mice. Aggressive mice also exhibited higher c-Fos expression in 5-HT neurons in the DRN compared to nonaggressive mice. In line with these findings, deletion of IL-1 receptor in the DRN enhanced c-Fos expression in 5-HT neurons during aggressive encounters, suggesting that modulation of 5-HT neuronal activity by IL-1β signaling in the DRN controls expression of aggressive behavior.
The MAL Protein, an Integral Component of Specialized Membranes, in Normal Cells and Cancer
Rubio-Ramos, A;Labat-de-Hoz, L;Correas, I;Alonso, MA;
PMID: 33946345 | DOI: 10.3390/cells10051065
The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. The MAL protein has two unusual biochemical features. First, it has lipid-like properties that qualify it as a member of the group of proteolipid proteins. Second, it partitions selectively into detergent-insoluble membranes, which are known to be enriched in condensed cell membranes, consistent with MAL being distributed in highly ordered membranes in the cell. Since its original description more than thirty years ago, a large body of evidence has accumulated supporting a role of MAL in specialized membranes in all the cell types in which it is expressed. Here, we review the structure, expression and biochemical characteristics of MAL, and discuss the association of MAL with raft membranes and the function of MAL in polarized epithelial cells, T lymphocytes, and myelin-forming cells. The evidence that MAL is a putative receptor of the epsilon toxin of Clostridium perfringens, the expression of MAL in lymphomas, the hypermethylation of the MAL gene and subsequent loss of MAL expression in carcinomas are also presented. We propose a model of MAL as the organizer of specialized condensed membranes to make them functional, discuss the role of MAL as a tumor suppressor in carcinomas, consider its potential use as a cancer biomarker, and summarize the directions for future research.
EGFR Overexpression and Sequence Analysis of KRAS, BRAF, and EGFR Mutation Hot Spots in Canine Intestinal Adenocarcinoma
Cho, SH;Seung, BJ;Kim, SH;Bae, MK;Lim, HY;Sur, JH;
PMID: 33926328 | DOI: 10.1177/03009858211009778
Epidermal growth factor receptor (EGFR) is overexpressed in many human colorectal cancers and anti-EGFR agents are employed as immunotherapies. However, KRAS, EGFR, and BRAF gene mutations can influence the activity of the anti-EGFR agents. We evaluated EGFR expression at protein and mRNA levels in canine intestinal adenocarcinomas using immunohistochemistry (IHC) and RNA in situ hybridization (RNA-ISH). We also investigated the mutation status of EGFR, KRAS, and BRAF to aid the development of anti-EGFR agents for canine intestinal adenocarcinoma. EGFR expression was highest in adenocarcinoma, followed by intramucosal neoplasia (adenoma and in situ carcinoma), and nonneoplastic canine intestinal tissue, at both protein (P = .000) and mRNA (P = .005) levels. The EGFR, KRAS, and BRAF genes showed wild-type sequences at the mutation hot spots in all 13 specimens. Thus, EGFR might serve as a promising diagnostic marker in canine intestinal adenocarcinoma, and further studies would be needed to develop EGFR-targeted anticancer therapies.
Spatial Transcriptomics: Molecular Maps of the Mammalian Brain
Annual review of neuroscience
Ortiz, C;Carlén, M;Meletis, K;
PMID: 33914592 | DOI: 10.1146/annurev-neuro-100520-082639
Maps of the nervous system inspire experiments and theories in neuroscience. Advances in molecular biology over the past decades have revolutionized the definition of cell and tissue identity. Spatial transcriptomics has opened up a new era in neuroanatomy, where the unsupervised and unbiased exploration of the molecular signatures of tissue organization will give rise to a new generation of brain maps. We propose that the molecular classification of brain regions on the basis of their gene expression profile can circumvent subjective neuroanatomical definitions and produce common reference frameworks that can incorporate cell types, connectivity, activity, and other modalities. Here we review the technological and conceptual advances made possible by spatial transcriptomics in the context of advancing neuroanatomy and discuss how molecular neuroanatomy can redefine mapping of the nervous system. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
AgRP signalling negatively regulates bone mass
Journal of neuroendocrinology
Enriquez, RF;Lee, NJ;Herzog, H;
PMID: 33913541 | DOI: 10.1111/jne.12978
The central nervous system is an active and major regulator of bone structure and remodelling. Specifically, signalling within the hypothalamus has been shown to be critical to ensuring that skeletal functions align with whole body metabolic supply and demand. Here, we identify agouti-related peptide (AgRP), an orexigenic peptide exclusively co-expressed with neuropeptide Y (NPY) in the arcuate nucleus (ARC) of the hypothalamus, as another critical player in the central control of bone homeostasis. Using novel mouse models, we show that AgRP deletion leads to an increase in cortical and trabecular bone mass as a result of an increase in bone thickness despite a lean phenotype, particularly in male mice. Interestingly, male AgRP deficient mice display a significant decrease in pro-opiomelanocortin (POMC) expression in the ARC, but no change in NPY or CART expression, suggesting that the increase in bone mass in AgRP-deficient mice is unlikely to be a result of altered NPY signalling. This is consistent with the observation that bone mass is unchanged in response to the specific deletion of NPY from AgRP expressing neurones. By contrast, POMC expression in the ARC is significantly increased in female AgRP deficient mice, although AgRP deletion results in altered respiratory exchange ratio regulation in response to re-feeding after a fast in both sexes. Taken together, the present study identifies AgRP as being directly involved in the regulation of bone mass and highlights the complexity intrinsic to the neuropeptide regulation of the skeleton.
Spinal astrocyte aldehyde dehydrogenase-2 mediates ethanol metabolism and analgesia in mice
British journal of anaesthesia
Jin, S;Cinar, R;Hu, X;Lin, Y;Luo, G;Lovinger, DM;Zhang, Y;Zhang, L;
PMID: 33934892 | DOI: 10.1016/j.bja.2021.02.035
Little is known about the targets in the CNS that mediate ethanol analgesia. This study explores the role of spinal astrocyte aldehyde dehydrogenase-2 (ALDH2), a key ethanol-metabolising enzyme, in the analgesic effects of ethanol in mice. Astrocyte and hepatocyte ALHD2-deficient mice were generated and tested in acute and chronic pain models. Cell-type-specific distribution of ALDH2 was analysed by RNA in situ hybridisation in spinal slices from astrocytic ALDH2-deficient mice and their wild-type littermates. Spinal ethanol metabolites and γ-aminobutyric acid (GABA) content were measured using gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. ALDH2 mRNA was expressed in both astrocytes and neurones in spinal cord slices. Astrocyte ALDH2-deficient mice had decreased expression of ALDH2 mRNA in astrocytes, but not in neurones. Astrocyte ALDH2 deficiency inhibited ethanol-derived acetate, but not acetaldehyde content in spinal cord tissues. Depletion of spinal astrocyte ALDH2 selectively inhibited ethanol-induced anti-nociceptive effect, but not the effect of ethanol, on motor function. Astrocyte ALDH2 deficiency abolished ethanol-induced GABA elevation. The ethanol metabolite acetate produced anti-nociception and increased GABA synthesis in a manner similar to ethanol. I.T. delivery of either GABAA or GABAB receptor antagonists prevented ethanol and acetate-induced analgesia. These findings provide evidence that ALDH2 in spinal astrocytes mediates spinal ethanol metabolism and ethanol-induced analgesic effects by promoting GABA synthesis and GABAergic transmission in spinal cord.
PRV-1 Infected Macrophages in Melanized Focal Changes in White Muscle of Atlantic Salmon (Salmo salar) Correlates With a Pro-Inflammatory Environment
Malik, MS;Bjørgen, H;Nyman, IB;Wessel, Ø;Koppang, EO;Dahle, MK;Rimstad, E;
PMID: 33995395 | DOI: 10.3389/fimmu.2021.664624
Melanized focal changes in white skeletal muscle of farmed Atlantic salmon, "black spots", is a quality problem affecting on average 20% of slaughtered fish. The spots appear initially as "red spots" characterized by hemorrhages and acute inflammation and progress into black spots characterized by chronic inflammation and abundant pigmented cells. Piscine orthoreovirus 1 (PRV-1) was previously found to be associated with macrophages and melano-macrophages in red and black spots. Here we have addressed the inflammatory microenvironment of red and black spots by studying the polarization status of the macrophages and cell mediated immune responses in spots, in both PRV-1 infected and non-infected fish. Samples that had been collected at regular intervals through the seawater production phase in a commercial farm were analyzed by multiplex fluorescent in situ hybridization (FISH) and RT-qPCR methods. Detection of abundant inducible nitric oxide synthase (iNOS2) expressing M1-polarized macrophages in red spots demonstrated a pro-inflammatory microenvironment. There was an almost perfect co-localization with the iNOS2 expression and PRV-1 infection. Black spots, on the other side, had few iNOS2 expressing cells, but a relatively high number of arginase-2 expressing anti-inflammatory M2-polarized macrophages containing melanin. The numerous M2-polarized melano-macrophages in black spots indicate an ongoing healing phase. Co-localization of PRV-1 and cells expressing CD8+ and MHC-I suggests a targeted immune response taking place in the spots. Altogether, this study indicates that PRV-1 induces a pro-inflammatory environment that is important for the pathogenesis of the spots. We do not have indication that infection of PRV-1 is the initial causative agent of this condition.
Pro-Epicardial Cells are Heterogeneous with Specified Smooth Muscle-Like and Pacemaker Progenitor Cells
Miao, L;Li, J;Lu, Y;Yin, C;Sun, D;Lo, E;Song, R;Cai, C;Huang, W;Long, X;McConnell, B;Fan, Z;Singer, H;Schwartz, R;Munshi, N;Wu, M;
| DOI: 10.2139/ssrn.3832987
The heterogeneity and specification of pro-epicardial cells (pro-EpiCs) to fibroblast and smooth muscle cell (SMC) are unknown. We applied single-cell RNA sequencing (scRNA-seq) paired with RNAScope, bioinformatics, and lineage tracing in an unbiased manner to identify the previously uncharacterized molecular heterogeneity of the pro-EpiCs isolated from pro-epicardium (PE). We found that pro-EpiCs labeled by _Tbx18 Cre/+ _ are heterogeneous, with three clusters displaying differential expression profiles and distinct spatial locations. Cluster 1 are mesothelial cells, and Cluster 2 express SMC markers. Surprisingly, Cluster 3 express _Isl1_ and markers of pacemaker progenitor cells (PMPC) but not marker of atrial cardiomyocytes. Our studies conclude that pro-EpiCs are heterogeneous and SMC-like cells are specified in the PE, while fibroblasts are not specified in PE but epicardium. We identified a region in PE that contains PMPCs, which translocate through the inflow tract to the sinoatrial node. The expression profile of Cluster 3 cells unifies previous studies regarding the origins and markers of PMPCs.
Fibrin-Associated, EBV-Negative Diffuse Large B-Cell Lymphoma Arising in Atrial Myxoma: Expanding the Spectrum of the Entity
International journal of surgical pathology
Baugh, L;Brown, N;Song, JY;Pandya, S;Montoya, V;Perry, AM;
PMID: 33913371 | DOI: 10.1177/10668969211014959
Fibrin-associated diffuse large B-cell lymphoma (FA-DLBCL) is a provisional entity in the 2017 Revision of the World Health Organization Classification. This indolent entity, which is frequently discovered incidentally, is currently classified under the category of diffuse large B-cell lymphoma associated with chronic inflammation (DLBCL-CI), an aggressive lymphoma with poor survival. Several authors have proposed that it be classified separately since, in contrast to DLBCL-CI, transformation to aggressive lymphoma has rarely been reported and this entity has distinct clinical and histological features. We describe a rare case of a 62-year-old male with FA-DLBCL associated with atrial myxoma, which was incidentally discovered. In contrast to typically described immunophenotypic features of this entity, that is, activated B-cell phenotype (ABC) and Epstein-Barr virus (EBV) positivity, our case showed germinal center B-cell (GCB) phenotype and was EBV negative. Clinical staging revealed no evidence of lymphoma elsewhere in the body, and the patient did not receive adjuvant chemotherapy after surgical excision and remains in remission. This case illustrates that occasionally FA-DLBCL can show GCB phenotype, as opposed to the typical ABC phenotype. Moreover, we propose that the definition of the entity be expanded to include EBV-negative cases.
Hydrocephalus in mouse B3glct mutants is likely caused by defects in multiple B3GLCT substrates in ependymal cells and subcommissural organ
Neupane, S;Goto, J;Berardinelli, SJ;Ito, A;Haltiwanger, RS;Holdener, BC;
PMID: 33909046 | DOI: 10.1093/glycob/cwab033
Peters plus syndrome, characterized by defects in eye and skeletal development with isolated cases of ventriculomegaly/hydrocephalus, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. In the endoplasmic reticulum, B3GLCT adds glucose to O-linked fucose on properly folded Thrombospondin Type 1 Repeats (TSRs). The resulting glucose-fucose disaccharide is proposed to stabilize the TSR fold and promote secretion of B3GLCT substrates, with some substrates more sensitive than others to loss of glucose. Mouse B3glct mutants develop hydrocephalus at high frequency. In this study, we demonstrated that B3glct mutant ependymal cells had fewer cilia basal bodies and altered translational polarity compared to controls. Localization of mRNA encoding A Disintegrin and Metalloproteinase with ThromboSpondin type 1 repeat 20 (ADAMTS20) and ADAMTS9, suggested that reduced function of these B3GLCT substrates contributed to ependymal cell abnormalities. In addition, we showed that multiple B3GLCT substrates (Adamts3, Adamts9, and Adamts20) are expressed by the subcommissural organ, that subcommissural organ-spondin (SSPO) TSRs were modified with O-linked glucose-fucose, and that loss of B3GLCT reduced secretion of SSPO in cultured cells. In the B3glct mutant subcommissural organ intracellular SSPO levels were reduced and BiP levels increased, suggesting a folding defect. Secreted SSPO colocalized with BiP, raising the possibility that abnormal extracellular assembly of SSPO into Reissner's fiber also contributed to impaired CSF flow in mutants. Combined, these studies underscore the complexity of the B3glct mutant hydrocephalus phenotype and demonstrate that impaired cerebrospinal fluid (CSF) flow likely stems from the collective effects of the mutation on multiple processes.
Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model
Thacker, VV;Sharma, K;Dhar, N;Mancini, GF;Sordet-Dessimoz, J;McKinney, JD;
PMID: 33908688 | DOI: 10.15252/embr.202152744
Severe cases of SARS-CoV-2 infection are characterized by hypercoagulopathies and systemic endotheliitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of an immune cell-mediated cytokine storm remain unknown. Using a vascularized lung-on-chip model, we find that infection of alveolar epithelial cells leads to limited apical release of virions, consistent with reports of monoculture infection. However, viral RNA and proteins are rapidly detected in underlying endothelial cells, which are themselves refractory to apical infection in monocultures. Although endothelial infection is unproductive, it leads to the formation of cell clusters with low CD31 expression, a progressive loss of barrier integrity and a pro-coagulatory microenvironment. Viral RNA persists in individual cells generating an inflammatory response, which is transient in epithelial cells but persistent in endothelial cells and typified by IL-6 secretion even in the absence of immune cells. Inhibition of IL-6 signalling with tocilizumab reduces but does not prevent loss of barrier integrity. SARS-CoV-2-mediated endothelial cell damage thus occurs independently of cytokine storm.