Critical role of interferons in gastrointestinal injury repair
McElrath, C;Espinosa, V;Lin, JD;Peng, J;Sridhar, R;Dutta, O;Tseng, HC;Smirnov, SV;Risman, H;Sandoval, MJ;Davra, V;Chang, YJ;Pollack, BP;Birge, RB;Galan, M;Rivera, A;Durbin, JE;Kotenko, SV;
PMID: 33976143 | DOI: 10.1038/s41467-021-22928-0
The etiology of ulcerative colitis is poorly understood and is likely to involve perturbation of the complex interactions between the mucosal immune system and the commensal bacteria of the gut, with cytokines acting as important cross-regulators. Here we use IFN receptor-deficient mice in a dextran sulfate sodium (DSS) model of acute intestinal injury to study the contributions of type I and III interferons (IFN) to the initiation, progression and resolution of acute colitis. We find that mice lacking both types of IFN receptors exhibit enhanced barrier destruction, extensive loss of goblet cells and diminished proliferation of epithelial cells in the colon following DSS-induced damage. Impaired mucosal healing in double IFN receptor-deficient mice is driven by decreased amphiregulin expression, which IFN signaling can up-regulate in either the epithelial or hematopoietic compartment. Together, these data underscore the pleiotropic functions of IFNs and demonstrate that these critical antiviral cytokines also support epithelial regeneration following acute colonic injury.
Capsazepine decreases corneal pain syndrome in severe dry eye disease
Journal of neuroinflammation
Fakih, D;Guerrero-Moreno, A;Baudouin, C;Goazigo, AR;Parsadaniantz, SM;
PMID: 33975636 | DOI: 10.1186/s12974-021-02162-7
Dry eye disease (DED) is a multifactorial disease of the ocular surface accompanied by neurosensory abnormalities. Here, we evaluated the effectiveness of transient receptor potential vanilloid-1 (TRPV1) blockade to alleviate ocular pain, neuroinflammation, and anxiety-like behavior associated with severe DED. Chronic DED was induced by unilateral excision of the Harderian and extraorbital lacrimal glands of adult male mice. Investigations were conducted at 21 days after surgery. The mRNA levels of TRPV1, transient receptor potential ankyrin-1 (TRPA1), and acid-sensing ion channels 1 and 3 (ASIC1 and ASIC3) in the trigeminal ganglion (TG) were evaluated by RNAscope in situ hybridization. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous and stimulated (cold, heat, and acid) corneal nerve responsiveness in ex vivo eye preparations. DED mice received topical instillations of the TRPV1 antagonist (capsazepine) twice a day for 2 weeks from d7 to d21 after surgery. The expression of genes involved in neuropathic and inflammatory pain was evaluated in the TG using a global genomic approach. Chemical and mechanical corneal nociception and spontaneous ocular pain were monitored. Finally, anxiety-like behaviors were assessed by elevated plus maze and black and white box tests. First, in situ hybridization showed DED to trigger upregulation of TRPV1, TRPA1, ASIC1, and ASIC3 mRNA in the ophthalmic branch of the TG. DED also induced overexpression of genes involved in neuropathic and inflammatory pain in the TG. Repeated instillations of capsazepine reduced corneal polymodal responsiveness to heat, cold, and acidic stimulation in ex vivo eye preparations. Consistent with these findings, chronic capsazepine instillation inhibited the upregulation of genes involved in neuropathic and inflammatory pain in the TG of DED animals and reduced the sensation of ocular pain, as well as anxiety-like behaviors associated with severe DED. These data provide novel insights on the effectiveness of TRPV1 antagonist instillation in alleviating abnormal corneal neurosensory symptoms induced by severe DED, opening an avenue for the repositioning of this molecule as a potential analgesic treatment for patients suffering from chronic DED.
Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury
Liberti, DC;Kremp, MM;Liberti, WA;Penkala, IJ;Li, S;Zhou, S;Morrisey, EE;
PMID: 33979629 | DOI: 10.1016/j.celrep.2021.109092
Alveolar epithelial type 2 (AT2) cells integrate signals from multiple molecular pathways to proliferate and differentiate to drive regeneration of the lung alveolus. Utilizing in vivo genetic and ex vivo organoid models, we investigated the role of Fgfr2 signaling in AT2 cells across the lifespan and during adult regeneration after influenza infection. We show that, although dispensable for adult homeostasis, Fgfr2 restricts AT2 cell fate during postnatal lung development. Using an unbiased computational imaging approach, we demonstrate that Fgfr2 promotes AT2 cell proliferation and restrains differentiation in actively regenerating areas after injury. Organoid assays reveal that Fgfr2-deficient AT2 cells remain competent to respond to multiple parallel proliferative inputs. Moreover, genetic blockade of AT2 cell cytokinesis demonstrates that cell division and differentiation are uncoupled during alveolar regeneration. These data reveal that Fgfr2 maintains AT2 cell fate, balancing proliferation and differentiation during lung alveolar regeneration.
The Known Unknowns of the Immune Response to Coccidioides
Journal of fungi (Basel, Switzerland)
Ward, RA;Thompson, GR;Villani, AC;Li, B;Mansour, MK;Wuethrich, M;Tam, JM;Klein, BS;Vyas, JM;
PMID: 34065016 | DOI: 10.3390/jof7050377
Coccidioidomycosis, otherwise known as Valley Fever, is caused by the dimorphic fungi Coccidioides immitis and C. posadasii. While most clinical cases present with self-limiting pulmonary infection, dissemination of Coccidioides spp. results in prolonged treatment and portends higher mortality rates. While the structure, genome, and niches for Coccidioides have provided some insight into the pathogenesis of disease, the underlying immunological mechanisms of clearance or inability to contain the infection in the lung are poorly understood. This review focuses on the known innate and adaptive immune responses to Coccidioides and highlights three important areas of uncertainty and potential approaches to address them. Closing these gaps in knowledge may enable new preventative and therapeutic strategies to be pursued.
VEGF receptor 2 (KDR) protects airways from mucus metaplasia through a Sox9-dependent pathway
Jiang, M;Fang, Y;Li, Y;Huang, H;Wei, Z;Gao, X;Sung, HK;Hu, J;Qiang, L;Ruan, J;Chen, Q;Jiang, D;Whitsett, JA;Ai, X;Que, J;
PMID: 34010630 | DOI: 10.1016/j.devcel.2021.04.027
Mucus-secreting goblet cells are the dominant cell type in pulmonary diseases, e.g., asthma and cystic fibrosis (CF), leading to pathologic mucus metaplasia and airway obstruction. Cytokines including IL-13 are the major players in the transdifferentiation of club cells into goblet cells. Unexpectedly, we have uncovered a previously undescribed pathway promoting mucous metaplasia that involves VEGFa and its receptor KDR. Single-cell RNA sequencing analysis coupled with genetic mouse modeling demonstrates that loss of epithelial VEGFa, KDR, or MEK/ERK kinase promotes excessive club-to-goblet transdifferentiation during development and regeneration. Sox9 is required for goblet cell differentiation following Kdr inhibition in both mouse and human club cells. Significantly, airway mucous metaplasia in asthmatic and CF patients is also associated with reduced KDR signaling and increased SOX9 expression. Together, these findings reveal an unexpected role for VEGFa/KDR signaling in the defense against mucous metaplasia, offering a potential therapeutic target for this common airway pathology.
Endoplasmic reticulum stress regulates the intestinal stem cell state through CtBP2
Meijer, BJ;Smit, WL;Koelink, PJ;Westendorp, BF;de Boer, RJ;van der Meer, JHM;Vermeulen, JLM;Paton, JC;Paton, AW;Qin, J;Dekker, E;Muncan, V;van den Brink, GR;Heijmans, J;
PMID: 33972635 | DOI: 10.1038/s41598-021-89326-w
Enforcing differentiation of cancer stem cells is considered as a potential strategy to sensitize colorectal cancer cells to irradiation and chemotherapy. Activation of the unfolded protein response, due to endoplasmic reticulum (ER) stress, causes rapid stem cell differentiation in normal intestinal and colon cancer cells. We previously found that stem cell differentiation was mediated by a Protein kinase R-like ER kinase (PERK) dependent arrest of mRNA translation, resulting in rapid protein depletion of WNT-dependent transcription factor c-MYC. We hypothesize that ER stress dependent stem cell differentiation may rely on the depletion of additional transcriptional regulators with a short protein half-life that are rapidly depleted due to a PERK-dependent translational pause. Using a novel screening method, we identify novel transcription factors that regulate the intestinal stem cell fate upon ER stress. ER stress was induced in LS174T cells with thapsigargin or subtilase cytotoxin (SubAB) and immediate alterations in nuclear transcription factor activity were assessed by the CatTFRE assay in which transcription factors present in nuclear lysate are bound to plasmid DNA, co-extracted and quantified using mass-spectrometry. The role of altered activity of transcription factor CtBP2 was further examined by modification of its expression levels using CAG-rtTA3-CtBP2 overexpression in small intestinal organoids, shCtBP2 knockdown in LS174T cells, and familial adenomatous polyposis patient-derived organoids. CtBP2 overexpression organoids were challenged by ER stress and ionizing irradiation. We identified a unique set of transcription factors with altered activation upon ER stress. Gene ontology analysis showed that transcription factors with diminished binding were involved in cellular differentiation processes. ER stress decreased CtBP2 protein expression in mouse small intestine. ER stress induced loss of CtBP2 expression which was rescued by inhibition of PERK signaling. CtBP2 was overexpressed in mouse and human colorectal adenomas. Inducible CtBP2 overexpression in organoids conferred higher clonogenic potential, resilience to irradiation-induced damage and a partial rescue of ER stress-induced loss of stemness. Using an unbiased proteomics approach, we identified a unique set of transcription factors for which DNA-binding activity is lost directly upon ER stress. We continued investigating the function of co-regulator CtBP2, and show that CtBP2 mediates ER stress-induced loss of stemness which supports the intestinal stem cell state in homeostatic stem cells and colorectal cancer cells.
Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections
Sun, YC;Chen, X;Fischer, S;Lu, S;Zhan, H;Gillis, J;Zador, AM;
PMID: 33972801 | DOI: 10.1038/s41593-021-00842-4
Functional circuits consist of neurons with diverse axonal projections and gene expression. Understanding the molecular signature of projections requires high-throughput interrogation of both gene expression and projections to multiple targets in the same cells at cellular resolution, which is difficult to achieve using current technology. Here, we introduce BARseq2, a technique that simultaneously maps projections and detects multiplexed gene expression by in situ sequencing. We determined the expression of cadherins and cell-type markers in 29,933 cells and the projections of 3,164 cells in both the mouse motor cortex and auditory cortex. Associating gene expression and projections in 1,349 neurons revealed shared cadherin signatures of homologous projections across the two cortical areas. These cadherins were enriched across multiple branches of the transcriptomic taxonomy. By correlating multigene expression and projections to many targets in single neurons with high throughput, BARseq2 provides a potential path to uncovering the molecular logic underlying neuronal circuits.
Detecting Borrelia Spirochetes: A Case Study With Validation Among Autopsy Specimens
Gadila, SKG;Rosoklija, G;Dwork, AJ;Fallon, BA;Embers, ME;
PMID: 34040573 | DOI: 10.3389/fneur.2021.628045
The complex etiology of neurodegenerative disease has prompted studies on multiple mechanisms including genetic predisposition, brain biochemistry, immunological responses, and microbial insult. In particular, Lyme disease is often associated with neurocognitive impairment with variable manifestations between patients. We sought to develop methods to reliably detect Borrelia burgdorferi, the spirochete bacteria responsible for Lyme disease, in autopsy specimens of patients with a history of neurocognitive disease. In this report, we describe the use of multiple molecular detection techniques for this pathogen and its application to a case study of a Lyme disease patient. The patient had a history of Lyme disease, was treated with antibiotics, and years later developed chronic symptoms including dementia. The patient's pathology and clinical case description was consistent with Lewy body dementia. B. burgdorferi was identified by PCR in several CNS tissues and by immunofluorescent staining in the spinal cord. These studies offer proof of the principle that persistent infection with the Lyme disease spirochete may have lingering consequences on the CNS.
The polyamine regulator AMD1 up-regulates spermine levels to drive epidermal differentiation
The Journal of investigative dermatology
Rahim, AB;Lim, HK;Ru Tan, CY;Jia, L;Leo, VI;Uemura, T;Hardman-Smart, J;Common, JEA;Lim, TC;Bellanger, S;Paus, R;Igarashi, K;Yang, H;Vardy, LA;
PMID: 33984347 | DOI: 10.1016/j.jid.2021.01.039
Maintaining tissue homeostasis depends on a balance of cell proliferation, differentiation and apoptosis. Within the epidermis the levels of the polyamines putrescine, spermidine and spermine are altered in many different skin conditions yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, AMD1, as a crucial regulator of keratinocyte differentiation. AMD1 protein is upregulated on differentiation and highly expressed in the suprabasal layers of the human epidermis. During keratinocyte differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown/inhibition of AMD1 results in reduced spermine levels and inhibition of keratinocyte differentiation. Supplementing AMD1-knockdown keratinocytes with exogenous spermidine/spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signalling proteins that drive keratinocyte differentiation including KLF4 and ZNF750. These findings demonstrate that human keratinocytes use controlled changes in polyamine levels to modulate gene expression to drive cellular behaviour changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or be used in the treatment of hyper-proliferative skin disorders.
Role of IQGAP1 in Papillomavirus-Associated Head and Neck Tumorigenesis
Wei, T;Choi, S;Buehler, D;Lee, D;Ward-Shaw, E;Anderson, RA;Lambert, PF;
PMID: 34068608 | DOI: 10.3390/cancers13092276
Approximately 25% of head and neck squamous cell carcinomas (HNSCC) are associated with human papillomavirus (HPV) infection. In these cancers as well as in HPV-associated anogenital cancers, PI3K signaling is highly activated. We previously showed that IQ motif-containing GTPase activating protein 1 (IQGAP1), a PI3K pathway scaffolding protein, is overexpressed in and contributes to HNSCC and that blocking IQGAP1-mediated PI3K signaling reduces HPV-positive HNSCC cell survival and migration. In this study, we tested whether IQGAP1 promotes papillomavirus (PV)-associated HNSCCs. IQGAP1 was necessary for optimal PI3K signaling induced by HPV16 oncoproteins in transgenic mice and MmuPV1 infection, a mouse papillomavirus that causes HNSCC in mice. Furthermore, we found that, at 6 months post-infection, MmuPV1-infected Iqgap1-/- mice developed significantly less severe tumor phenotypes than MmuPV1-infected Iqgap1+/+ mice, indicating a role of IQGAP1 in MmuPV1-associated HNSCC. The tumors resulting from MmuPV1 infection showed features consistent with HPV infection and HPV-associated cancer. However, such IQGAP1-dependent effects on disease severity were not observed in an HPV16 transgenic mouse model for HNC. This may reflect that IQGAP1 plays a role in earlier stages of viral pathogenesis, or other activities of HPV16 oncogenes are more dominant in driving carcinogenesis than their influence on PI3K signaling.
Validation of a DKK1 RNAscope chromogenic in situ hybridization assay for gastric and gastroesophageal junction adenocarcinoma tumors
Caldwell, C;Rottman, JB;Paces, W;Bueche, E;Reitsma, S;Gibb, J;Adisetiyo, V;Haas, MS;Heath, H;Newman, W;Baum, J;Gianani, R;Kagey, MH;
PMID: 33972574 | DOI: 10.1038/s41598-021-89060-3
Dickkopf-1 (DKK1) is a secreted modulator of Wnt signaling that is frequently overexpressed in tumors and associated with poor clinical outcomes. DKN-01 is a humanized monoclonal therapeutic antibody that binds DKK1 with high affinity and has demonstrated clinical activity in gastric/gastroesophageal junction (G/GEJ) patients with elevated tumoral expression of DKK1. Here we report on the validation of a DKK1 RNAscope chromogenic in situ hybridization assay to assess DKK1 expression in G/GEJ tumor tissue. To reduce pathologist time, potential pathologist variability from manual scoring and support pathologist decision making, a digital image analysis algorithm that identifies tumor cells and quantifies the DKK1 signal was developed. Following CLIA guidelines the DKK1 RNAscope chromogenic in situ hybridization assay and digital image analysis algorithm were successfully validated for sensitivity, specificity, accuracy, and precision. The DKK1 RNAscope assay in conjunction with the digital image analysis solution is acceptable for prospective screening of G/GEJ adenocarcinoma patients. The work described here will further advance the companion diagnostic development of our DKK1 RNAscope assay and could generally be used as a guide for the validation of RNAscope assays with digital image quantification.
Interactions between maternal fluoxetine exposure, the maternal gut microbiome and fetal neurodevelopment in mice
Behavioural brain research
Vuong, HE;Coley, EJL;Kazantsev, M;Cooke, ME;Rendon, TK;Paramo, J;Hsiao, EY;
PMID: 33979656 | DOI: 10.1016/j.bbr.2021.113353
Selective serotonin reuptake inhibitors (SSRIs) are the most widely used treatment by women experiencing depression during pregnancy. However, the effects of maternal SSRI use on early offspring development remain poorly understood. Recent studies suggest that SSRIs can modify the gut microbiota and interact directly with particular gut bacteria, raising the question of whether the gut microbiome impacts host responses to SSRIs. In this study, we investigate effects of prenatal SSRI exposure on fetal neurodevelopment and further evaluate potential modulatory influences of the maternal gut microbiome. We demonstrate that maternal treatment with the SSRI fluoxetine induces widespread alterations in the fetal brain transcriptome during midgestation, including increases in the expression of genes relevant to synaptic organization and neuronal signaling and decreases in the expression of genes related to DNA replication and mitosis. Notably, maternal fluoxetine treatment from E7.5 to E14.5 has no overt effects on the composition of the maternal gut microbiota. However, maternal pretreatment with antibiotics to deplete the gut microbiome substantially modifies transcriptional responses of the fetal brain to maternal fluoxetine treatment. In particular, maternal fluoxetine treatment elevates localized expression of the opioid binding protein/cell adhesion molecule like gene Opcml in the fetal thalamus and lateral ganglionic eminence, which is prevented by maternal antibiotic treatment. Together, these findings reveal that maternal fluoxetine treatment alters gene expression in the fetal brain through pathways that are impacted, at least in part, by the presence of the maternal gut microbiota.