Surface Proteins of SARS-CoV-2 Drive Airway Epithelial Cells to Induce IFN-Dependent Inflammation
Journal of immunology (Baltimore, Md. : 1950)
Anand, G;Perry, AM;Cummings, CL;Raymond, E;Clemens, RA;Steed, AL;
PMID: 34078711 | DOI: 10.4049/jimmunol.2001407
SARS-CoV-2, the virus that has caused the COVID-19 pandemic, robustly activates the host immune system in critically ill patients. Understanding how the virus engages the immune system will facilitate the development of needed therapeutic strategies. In this study, we demonstrate both in vitro and in vivo that the SARS-CoV-2 surface proteins spike (S) and envelope (E) activate the key immune signaling IFN pathway in both human and mouse immune and epithelial cells independent of viral infection and replication. These proteins induce reactive oxidative species generation and increases in human- and murine-specific, IFN-responsive cytokines and chemokines, similar to their upregulation in critically ill COVID-19 patients. Induction of IFN signaling is dependent on canonical but discrepant inflammatory signaling mediators, as the activation induced by S is dependent on IRF3, TBK1, and MyD88, whereas that of E is largely MyD88 independent. Furthermore, these viral surface proteins, specifically E, induced peribronchial inflammation and pulmonary vasculitis in a mouse model. Finally, we show that the organized inflammatory infiltrates are dependent on type I IFN signaling, specifically in lung epithelial cells. These findings underscore the role of SARS-CoV-2 surface proteins, particularly the understudied E protein, in driving cell specific inflammation and their potential for therapeutic intervention.
Distribution and persistence of atypical porcine pestivirus in experimentally inoculated pigs
Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc
Buckley, AC;Falkenberg, SM;Palmer, MV;Arruda, PH;Magstadt, DR;Schwartz, KJ;Gatto, IR;Neill, JD;Arruda, BL;
PMID: 34078182 | DOI: 10.1177/10406387211022683
Atypical porcine pestivirus (APPV) is a cause of congenital tremors (CTs) in piglets and has been found in swine populations around the globe. Although systemic distribution of the virus has been reported, there is limited information regarding viral localization at the cellular level and distribution at the tissue level. We collected multiple tissues from 2-d-old piglets (n = 36) born to sows inoculated at 45 or 62 d of gestation with APPV via 3 simultaneous routes: intravenous, intranasal, and directly in amniotic vesicles. In addition, 2 boars from APPV-inoculated sows with CT were raised and euthanized when 11 mo old. In situ hybridization performed on tissue samples from piglets demonstrated a broad and systemic distribution of viral RNA including endothelial cells, fibroblasts, and smooth muscle. Labeling in tissues was more pronounced in piglet tissues compared to boars, with the notable exception of diffuse labeling of the cerebellum in boars. Presence of APPV in boar tissues well after resolution of clinical signs suggests persistence of APPV similar to other pestiviruses.
Gene Therapy Using Adeno-Associated Virus Serotype 8 Encoding TNAP-D10 Improves the Skeletal and Dentoalveolar Phenotypes in Alpl-/- Mice
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
Kinoshita, Y;Mohamed, FF;Amadeu de Oliveira, F;Narisawa, S;Miyake, K;Foster, BL;Millán, JL;
PMID: 34076297 | DOI: 10.1002/jbmr.4382
Hypophosphatasia (HPP) is caused by loss-of-function mutations in the ALPL gene that encodes tissue-nonspecific alkaline phosphatase (TNAP), whose deficiency results in the accumulation of extracellular inorganic pyrophosphate (PPi ), a potent mineralization inhibitor. Skeletal and dental hypomineralization characterizes HPP, with disease severity varying from life-threatening perinatal or infantile forms to milder forms that manifest in adulthood or only affect the dentition. Enzyme replacement therapy (ERT) using mineral-targeted recombinant TNAP (Strensiq/asfotase alfa) markedly improves the life span, skeletal phenotype, motor function, and quality of life of patients with HPP, though limitations of ERT include frequent injections due to a short elimination half-life of 2.28 days and injection site reactions. We tested the efficacy of a single intramuscular administration of adeno-associated virus 8 (AAV8) encoding TNAP-D10 to increase the life span and improve the skeletal and dentoalveolar phenotypes in TNAP knockout (Alpl-/- ) mice, a murine model for severe infantile HPP. Alpl-/- mice received 3 × 1011 vector genomes/body of AAV8-TNAP-D10 within 5 days postnatal (dpn). AAV8-TNAP-D10 elevated serum ALP activity and suppressed plasma PPi . Treatment extended life span of Alpl-/- mice, and no ectopic calcifications were observed in the kidneys, aorta, coronary arteries, or brain in the 70 dpn observational window. Treated Alpl-/- mice did not show signs of rickets, including bowing of long bones, enlargement of epiphyses, or fractures. Bone microstructure of treated Alpl-/- mice was similar to wild type, with a few persistent small cortical and trabecular defects. Histology showed no measurable osteoid accumulation but reduced bone volume fraction in treated Alpl-/- mice versus controls. Treated Alpl-/- mice featured normal molar and incisor dentoalveolar tissues, with the exceptions of slightly reduced molar enamel and alveolar bone density. Histology showed the presence of cementum and normal periodontal ligament attachment. These results support gene therapy as a promising alternative to ERT for the treatment of HPP.
Tracing the origin of hair follicle stem cells
Morita, R;Sanzen, N;Sasaki, H;Hayashi, T;Umeda, M;Yoshimura, M;Yamamoto, T;Shibata, T;Abe, T;Kiyonari, H;Furuta, Y;Nikaido, I;Fujiwara, H;
PMID: 34108685 | DOI: 10.1038/s41586-021-03638-5
Tissue stem cells are generated from a population of embryonic progenitors through organ-specific morphogenetic events1,2. Although tissue stem cells are central to organ homeostasis and regeneration, it remains unclear how they are induced during development, mainly because of the lack of markers that exclusively label prospective stem cells. Here we combine marker-independent long-term 3D live imaging and single-cell transcriptomics to capture a dynamic lineage progression and transcriptome changes in the entire epithelium of the mouse hair follicle as it develops. We found that the precursors of different epithelial lineages were aligned in a 2D concentric manner in the basal layer of the hair placode. Each concentric ring acquired unique transcriptomes and extended to form longitudinally aligned, 3D cylindrical compartments. Prospective bulge stem cells were derived from the peripheral ring of the placode basal layer, but not from suprabasal cells (as was previously suggested3). The fate of placode cells is determined by the cell position, rather than by the orientation of cell division. We also identified 13 gene clusters: the ensemble expression dynamics of these clusters drew the entire transcriptional landscape of epithelial lineage diversification, consistent with cell lineage data. Combining these findings with previous work on the development of appendages in insects4,5, we describe the 'telescope model', a generalized model for the development of ectodermal organs in which 2D concentric zones in the placode telescope out to form 3D longitudinally aligned cylindrical compartments.
Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5
Hartmann, J;Bajaj, T;Klengel, C;Chatzinakos, C;Ebert, T;Dedic, N;McCullough, KM;Lardenoije, R;Joëls, M;Meijer, OC;McCann, KE;Dudek, SM;Sarabdjitsingh, RA;Daskalakis, NP;Klengel, T;Gassen, NC;Schmidt, MV;Ressler, KJ;
PMID: 34077736 | DOI: 10.1016/j.celrep.2021.109185
Responding to different dynamic levels of stress is critical for mammalian survival. Disruption of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) signaling is proposed to underlie hypothalamic-pituitary-adrenal (HPA) axis dysregulation observed in stress-related psychiatric disorders. In this study, we show that FK506-binding protein 51 (FKBP5) plays a critical role in fine-tuning MR:GR balance in the hippocampus. Biotinylated-oligonucleotide immunoprecipitation in primary hippocampal neurons reveals that MR binding, rather than GR binding, to the Fkbp5 gene regulates FKBP5 expression during baseline activity of glucocorticoids. Notably, FKBP5 and MR exhibit similar hippocampal expression patterns in mice and humans, which are distinct from that of the GR. Pharmacological inhibition and region- and cell type-specific receptor deletion in mice further demonstrate that lack of MR decreases hippocampal Fkbp5 levels and dampens the stress-induced increase in glucocorticoid levels. Overall, our findings demonstrate that MR-dependent changes in baseline Fkbp5 expression modify GR sensitivity to glucocorticoids, providing insight into mechanisms of stress homeostasis.
Exposure to Prenatal Stress Is Associated With an Excitatory/Inhibitory Imbalance in Rat Prefrontal Cortex and Amygdala and an Increased Risk for Emotional Dysregulation
Frontiers in cell and developmental biology
Marchisella, F;Creutzberg, KC;Begni, V;Sanson, A;Wearick-Silva, LE;Tractenberg, SG;Orso, R;Kestering-Ferreira, É;Grassi-Oliveira, R;Riva, MA;
PMID: 34141707 | DOI: 10.3389/fcell.2021.653384
Epidemiological studies have shown that environmental insults and maternal stress during pregnancy increase the risk of several psychiatric disorders in the offspring. Converging lines of evidence from humans, as well as from rodent models, suggest that prenatal stress (PNS) interferes with fetal development, ultimately determining changes in brain maturation and function that may lead to the onset of neuropsychiatric disorders. From a molecular standpoint, transcriptional alterations are thought to play a major role in this context and may contribute to the behavioral phenotype by shifting the expression of genes related to excitatory and inhibitory (E/I) transmission balance. Nevertheless, the exact neurophysiological mechanisms underlying the enhanced vulnerability to psychopathology following PNS exposure are not well understood. In the present study, we used a model of maternal stress in rats to investigate the distal effects of PNS on the expression of genes related to glutamatergic and GABAergic neurotransmissions. We inspected two critical brain regions involved in emotion regulation, namely, the prefrontal cortex (PFC) and the amygdala (AMY), which we show to relate with the mild behavioral effects detected in adult rat offspring. We observed that PNS exposure promotes E/I imbalance in the PFC of adult males only, by dysregulating the expression of glutamatergic-related genes. Moreover, such an effect is accompanied by increased expression of the activity-dependent synaptic modulator gene Npas4 specifically in the PFC parvalbumin (PV)-positive interneurons, suggesting an altered regulation of synapse formation promoting higher PV-dependent inhibitory transmission and increased overall circuit inhibition in the PFC of males. In the AMY, PNS more evidently affects the transcription of GABAergic-related genes, shifting the balance toward inhibition. Collectively, our findings suggest that the E/I dysregulation of the PFC-to-AMY transmission may be a long-term signature of PNS and may contribute to increase the risk for mood disorder upon further stress.
Dissection and surgical approaches to the mouse jugular-nodose ganglia
Han, W;de Araujo, I;
| DOI: 10.1016/j.xpro.2021.100474
The jugular-nodose ganglia contain the sensory peripheral neurons of the vagus nerve, linking visceral organs to the medulla oblongata. Accessing these ganglia in smaller animals without damaging the vascular and neural structures may be challenging, as ganglionic fibers imbed deeply into the carotid sheath, and vagal parasympathetic fibers cross through the interior of the ganglia. We describe a practical protocol for locating and accessing the mouse jugular-nodose ganglia _in vivo_, including instructions for intraganglionic injections and postperfusion dissection.
Preparation of the intact rodent organ of Corti for RNAscope and immunolabeling, confocal microscopy, and quantitative analysis
Reijntjes, D;Breitzler, J;Persic, D;Pyott, S;
| DOI: 10.1016/j.xpro.2021.100544
This protocol describes the preparation of the mouse organ of Corti for RNAscope, immunolabeling, confocal microscopy, and quantitative image analysis to examine transcript and protein localization, sensory hair cells, and synapses. This protocol can be applied to mice and other rodents (juvenile and adult) and can be adapted for other techniques, including electrophysiology and RNA sequencing. This protocol features minimal tissue processing to preserve viability for downstream assays, while isolating the organ of Corti is the most challenging step.
Oocyte specific lncRNA variant Rose influences oocyte and embryo development
Iyyappan, R;Aleshkina, D;Zhu, L;Jiang, Z;Kinterova, V;Susor, A;
| DOI: 10.1016/j.ncrna.2021.06.001
Fully grown mammalian oocytes store a large amount of RNA synthesized during the transcriptionally active growth stage. A large part of the stored RNA belongs to the long non-coding class which contain either transcriptional noise or important contributors to cellular physiology. Despite the expanding number of studies related to lncRNAs, their influence on oocyte physiology remains enigmatic. We found an oocyte specific antisense, long non-coding RNA, “Rose” (lncRNA in Oocyte Specifically Expressed) expressed in two variants containing two and three non-coding exons, respectively. Rose is localized in the nucleus of transcriptionally active oocyte and in embryo with polysomal occupancy in the cytoplasm. Experimental overexpression of Rose in fully grown oocyte did not show any differences in meiotic maturation. However, knocking down Rose resulted in abnormalities in oocyte cytokinesis and impaired preimplantation embryo development. In conclusion, we have identified an oocyte-specific maternal lncRNA that is essential for successful mammalian oocyte and embryo development.
Cytokine RNA In Situ Hybridization Permits Individualized Molecular Phenotyping in Biopsies of Psoriasis and Atopic Dermatitis
Wang, A;Fogel, A;Murphy, M;Panse, G;McGeary, M;McNiff, J;Bosenberg, M;Vesely, M;Cohen, J;Ko, C;King, B;Damsky, W;
| DOI: 10.1016/j.xjidi.2021.100021
Detection of individual cytokines in routine biopsies from patients with inflammatory skin diseases has the potential to personalize diagnosis and treatment selection, but this approach has been limited by technical feasibility. We evaluate whether a chromogen-based RNA in situ hybridization approach can be used to detect druggable cytokines in psoriasis and atopic dermatitis. A series of psoriasis (n = 20) and atopic dermatitis (n = 26) biopsies were stained using RNA in situ hybridization for IL4, IL12B (IL-12/23 p40), IL13, IL17A, IL17F, IL22, IL23A (IL-23 p19), IL31, and TNF (TNF-α). NOS2 and IFNG, canonical psoriasis biomarkers, were also included. All 20 of the psoriasis cases were positive for IL17A, which tended to be the predominant cytokine, although some cases had relatively higher levels of IL12B, IL17F, or IL23A. The majority of cytokine expression in psoriasis was epidermal. A total of 22 of 26 atopic dermatitis cases were positive for IL13, also at varying levels; a subset of cases had significant IL4, IL22, or IL31 expression. Patterns were validated in independent bulk RNA-sequencing and single-cell RNA-sequencing datasets. Overall, RNA in situ hybridization for cytokines appears highly specific with virtually no background staining and may allow for individualized evaluation of treatment-relevant cytokine targets in biopsies from patients with inflammatory skin disorders.
Bilateral Chilblain-like Lesions of the Toes Characterized by Microvascular Remodeling in Adolescents During the COVID-19 Pandemic
Discepolo, V;Catzola, A;Pierri, L;Mascolo, M;Della Casa, F;Vastarella, M;Smith, G;Travaglino, A;Punziano, A;Nappa, P;Staibano, S;Bruzzese, E;Fabbrocini, G;Guarino, A;Alessio, M;
PMID: 34110396 | DOI: 10.1001/jamanetworkopen.2021.11369
Chilblain-like lesions have been one of the most frequently described cutaneous manifestations during the COVID-19 pandemic. Their etiopathogenesis, including the role of SARS-CoV-2, remains elusive.To examine the association of chilblain-like lesions with SARS-CoV-2 infection.This prospective case series enrolled 17 adolescents who presented with chilblain-like lesions from April 1 to June 30, 2020, at a tertiary referral academic hospital in Italy.Macroscopic (clinical and dermoscopic) and microscopic (histopathologic) analysis contributed to a thorough understanding of the lesions. Nasopharyngeal swab, serologic testing, and in situ hybridization of the skin biopsy specimens were performed to test for SARS-CoV-2 infection. Laboratory tests explored signs of systemic inflammation or thrombophilia. Structural changes in peripheral microcirculation were investigated by capillaroscopy.Of the 17 adolescents (9 [52.9%] male; median [interquartile range] age, 13.2 [12.5-14.3] years) enrolled during the first wave of the COVID-19 pandemic, 16 (94.1%) had bilaterally localized distal erythematous or cyanotic lesions. A triad of red dots (16 [100%]), white rosettes (11 [68.8%]), and white streaks (10 [62.5%]) characterized the dermoscopic picture. Histologic analysis revealed a remodeling of the dermal blood vessels with a lobular arrangement, wall thickening, and a mild perivascular lymphocytic infiltrate. SARS-CoV-2 infection was excluded by molecular and serologic testing. In situ hybridization did not highlight the viral genome in the lesions.This study delineated the clinical, histologic, and laboratory features of chilblain-like lesions that emerged during the COVID-19 pandemic, and its findings do not support their association with SARS-CoV-2 infection. The lesions occurred in otherwise healthy adolescents, had a long but benign course to self-resolution, and were characterized by a microvascular remodeling with perivascular lymphocytic infiltrate but no other signs of vasculitis. These results suggest that chilblain-like lesions do not imply a concomitant SARS-CoV-2 infection. Ongoing studies will help clarify the etiopathogenic mechanisms.
One or two dose regimen of the SARS-CoV-2 synthetic DNA vaccine INO-4800 protects against respiratory tract disease burden in nonhuman primate challenge model
Gooch, K;Smith, T;Salguero, F;Fotheringham, S;Watson, R;Dennis, M;Handley, A;Humphries, H;Longet, S;Tipton, T;Sarfas, C;Sibley, L;Slack, G;Rayner, E;Ryan, K;Schultheis, K;Ramos, S;White, A;Charlton, S;Sharpe, S;Gleeson, F;Humeau, L;Hall, Y;Broderick, K;Carroll, M;
| DOI: 10.1016/j.vaccine.2021.06.057
Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induced both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 x 106 pfu) via the intranasal and intratracheal routes we observed significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 was associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provided no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.