Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search
  • Probes for (1571451)
  • Kits & Accessories (135)
  • Support & Documents (0)
  • Publications (7110)
  • Image gallery (0)
Refine Probe List

Content for comparison

Species

  • Mouse (320919) Apply Mouse filter
  • Human (293611) Apply Human filter
  • Other (131299) Apply Other filter
  • Rat (63465) Apply Rat filter
  • Zebrafish (54667) Apply Zebrafish filter
  • Monkey (43709) Apply Monkey filter
  • Pig (17303) Apply Pig filter
  • Dog (16085) Apply Dog filter
  • Rabbit (8222) Apply Rabbit filter
  • Felis catus (7033) Apply Felis catus filter
  • Bovine (6266) Apply Bovine filter
  • Callithrix jacchus (5027) Apply Callithrix jacchus filter
  • Ovis aries (3328) Apply Ovis aries filter
  • Anolis carolinensis (3027) Apply Anolis carolinensis filter
  • Mesocricetus auratus (3019) Apply Mesocricetus auratus filter
  • Octopus bimaculoides (2731) Apply Octopus bimaculoides filter
  • Salmo salar (2711) Apply Salmo salar filter
  • Astyanax mexicanus (2665) Apply Astyanax mexicanus filter
  • Heterocephalus glaber (2596) Apply Heterocephalus glaber filter
  • Aedes aegypti (2427) Apply Aedes aegypti filter
  • Pogona vitticeps (2245) Apply Pogona vitticeps filter
  • Sorghum bicolor (1880) Apply Sorghum bicolor filter
  • Anopheles gambiae str. PEST (1759) Apply Anopheles gambiae str. PEST filter
  • Oryzias latipes (1746) Apply Oryzias latipes filter
  • Trichoplax adhaerens (1720) Apply Trichoplax adhaerens filter
  • Xenopus laevis (1534) Apply Xenopus laevis filter
  • Human papillomavirus (1523) Apply Human papillomavirus filter
  • Human herpesvirus (1465) Apply Human herpesvirus filter
  • Other virus (1461) Apply Other virus filter
  • Ixodes scapularis (1395) Apply Ixodes scapularis filter
  • Oncorhynchus mykiss (1393) Apply Oncorhynchus mykiss filter
  • Macaca nemestrina (1310) Apply Macaca nemestrina filter
  • Human immunodeficiency virus 1 (1303) Apply Human immunodeficiency virus 1 filter
  • Ginglymostoma cirratum (1163) Apply Ginglymostoma cirratum filter
  • Hepatitis B virus (1141) Apply Hepatitis B virus filter
  • Xenopus tropicalis (1138) Apply Xenopus tropicalis filter
  • Peromyscus maniculatus bairdii (1114) Apply Peromyscus maniculatus bairdii filter
  • Serinus canaria (1038) Apply Serinus canaria filter
  • Ictidomys tridecemlineatus (1028) Apply Ictidomys tridecemlineatus filter
  • Microtus ochrogaster (1024) Apply Microtus ochrogaster filter
  • Nothobranchius furzeri (1001) Apply Nothobranchius furzeri filter
  • synthetic construct (879) Apply synthetic construct filter
  • Gasterosteus aculeatus (818) Apply Gasterosteus aculeatus filter
  • Lonchura striata domestica (805) Apply Lonchura striata domestica filter
  • Hippocampus comes (768) Apply Hippocampus comes filter
  • Monodelphis domestica (694) Apply Monodelphis domestica filter
  • Rousettus aegyptiacus (639) Apply Rousettus aegyptiacus filter
  • Tupaia chinensis (617) Apply Tupaia chinensis filter
  • Anopheles gambiae (612) Apply Anopheles gambiae filter
  • Meriones unguiculatus (583) Apply Meriones unguiculatus filter

Gene

  • PPIB (2561) Apply PPIB filter
  • TBD (1462) Apply TBD filter
  • Bdnf (1374) Apply Bdnf filter
  • GAPDH (1320) Apply GAPDH filter
  • Htt (1318) Apply Htt filter
  • UBC (1313) Apply UBC filter
  • Slc17a6 (1162) Apply Slc17a6 filter
  • FOS (1149) Apply FOS filter
  • Gad1 (1096) Apply Gad1 filter
  • Il10 (1077) Apply Il10 filter
  • CD4 (1066) Apply CD4 filter
  • POLR2A (1063) Apply POLR2A filter
  • ESR1 (1025) Apply ESR1 filter
  • AR (989) Apply AR filter
  • Vegfa (885) Apply Vegfa filter
  • Tnf (884) Apply Tnf filter
  • Lgr5 (875) Apply Lgr5 filter
  • Oxtr (868) Apply Oxtr filter
  • Ifng (851) Apply Ifng filter
  • NTRK2 (846) Apply NTRK2 filter
  • Ace2 (835) Apply Ace2 filter
  • DRD2 (824) Apply DRD2 filter
  • TGFB1 (822) Apply TGFB1 filter
  • Slc17a7 (808) Apply Slc17a7 filter
  • Rbfox3 (806) Apply Rbfox3 filter
  • LEPR (804) Apply LEPR filter
  • Nrg1 (791) Apply Nrg1 filter
  • OPRM1 (786) Apply OPRM1 filter
  • GFAP (784) Apply GFAP filter
  • PDGFRA (774) Apply PDGFRA filter
  • IL6 (751) Apply IL6 filter
  • ACTB (745) Apply ACTB filter
  • Sox9 (745) Apply Sox9 filter
  • Chat (731) Apply Chat filter
  • DRD1 (730) Apply DRD1 filter
  • GLP1R (728) Apply GLP1R filter
  • NP (728) Apply NP filter
  • Cd8a (727) Apply Cd8a filter
  • PECAM1 (725) Apply PECAM1 filter
  • MAPT (723) Apply MAPT filter
  • COL1A1 (703) Apply COL1A1 filter
  • ACTA2 (701) Apply ACTA2 filter
  • CD3E (694) Apply CD3E filter
  • TRPA1 (688) Apply TRPA1 filter
  • CDKN1A (670) Apply CDKN1A filter
  • S (658) Apply S filter
  • Sst (650) Apply Sst filter
  • Piezo2 (643) Apply Piezo2 filter
  • 16SrRNA (638) Apply 16SrRNA filter
  • CD68 (615) Apply CD68 filter

Platform

  • Manual Assay RNAscope HiPlex (511449) Apply Manual Assay RNAscope HiPlex filter
  • Automated Assay for Leica Systems - RNAscope (128999) Apply Automated Assay for Leica Systems - RNAscope filter
  • Manual Assay RNAscope (70981) Apply Manual Assay RNAscope filter
  • Automated Assay for Ventana Systems - RNAscope (36105) Apply Automated Assay for Ventana Systems - RNAscope filter
  • Manual Assay BaseScope (5508) Apply Manual Assay BaseScope filter
  • Manual Assay miRNAscope (5124) Apply Manual Assay miRNAscope filter
  • Automated Assay for Leica Systems - miRNAscope (4930) Apply Automated Assay for Leica Systems - miRNAscope filter
  • Automated Assay for Leica Systems - BaseScope (4611) Apply Automated Assay for Leica Systems - BaseScope filter
  • Automated Assay for Ventana System - BaseScope (4574) Apply Automated Assay for Ventana System - BaseScope filter
  • Automated Assay for Ventana Systems - miRNAscope (4077) Apply Automated Assay for Ventana Systems - miRNAscope filter
  • Manual Assay DNAscope (227) Apply Manual Assay DNAscope filter
  • Manual Assay 2.5 (9) Apply Manual Assay 2.5 filter
  • T3 (3) Apply T3 filter
  • T4 (3) Apply T4 filter
  • T8 (3) Apply T8 filter
  • T1 (3) Apply T1 filter
  • T10 (3) Apply T10 filter
  • Manual Assay HiPlex (2) Apply Manual Assay HiPlex filter
  • T2 (2) Apply T2 filter
  • T7 (2) Apply T7 filter
  • T9 (2) Apply T9 filter
  • Automated Assay for Leica Systems (LS 2.5) (1) Apply Automated Assay for Leica Systems (LS 2.5) filter
  • T5 (1) Apply T5 filter
  • T6 (1) Apply T6 filter
  • T11 (1) Apply T11 filter
  • T12 (1) Apply T12 filter

Channel

  • 1 (158789) Apply 1 filter
  • 2 (145194) Apply 2 filter
  • 3 (93691) Apply 3 filter
  • 4 (93473) Apply 4 filter
  • 6 (46553) Apply 6 filter
  • 5 (36684) Apply 5 filter
  • 8 (82) Apply 8 filter
  • 9 (76) Apply 9 filter
  • 7 (72) Apply 7 filter
  • 11 (67) Apply 11 filter
  • 10 (58) Apply 10 filter
  • 12 (50) Apply 12 filter

HiPlex Channel

  • T1 (85058) Apply T1 filter
  • T10 (85051) Apply T10 filter
  • T12 (85050) Apply T12 filter
  • T11 (85039) Apply T11 filter
  • T9 (82563) Apply T9 filter
  • T8 (82560) Apply T8 filter
  • T4 (82558) Apply T4 filter
  • T2 (82557) Apply T2 filter
  • T7 (82553) Apply T7 filter
  • T3 (82546) Apply T3 filter
  • T6 (82546) Apply T6 filter
  • T5 (82540) Apply T5 filter
  • S1 (32) Apply S1 filter
  • 8 (17) Apply 8 filter
  • 1 (1) Apply 1 filter
  • 10 (1) Apply 10 filter
  • 6 (1) Apply 6 filter

Product

  • RNAscope Multiplex Fluorescent Assay (1035) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (998) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (732) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (704) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (497) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (293) Apply RNAscope 2.5 HD Brown Assay filter
  • TBD (193) Apply TBD filter
  • RNAscope 2.5 LS Assay (191) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (160) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (108) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (97) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (91) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (85) Apply RNAscope 2.5 VS Assay filter
  • Basescope (53) Apply Basescope filter
  • RNAscope HiPlex v2 assay (30) Apply RNAscope HiPlex v2 assay filter
  • miRNAscope (26) Apply miRNAscope filter
  • DNAscope HD Duplex Reagent Kit (15) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD duplex reagent kit (13) Apply RNAscope 2.5 HD duplex reagent kit filter
  • BaseScope Duplex Assay (12) Apply BaseScope Duplex Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (6) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Fluorescent Multiplex Reagent kit (5) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope ISH Probe High Risk HPV (5) Apply RNAscope ISH Probe High Risk HPV filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD Reagent Kit (4) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope HiPlex12 Reagents Kit (3) Apply RNAscope HiPlex12 Reagents Kit filter
  • DNAscope Duplex Assay (2) Apply DNAscope Duplex Assay filter
  • RNAscope 2.5 HD Assay (2) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay - RED (2) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope Multiplex Fluorescent Assay v2 (2) Apply RNAscope Multiplex Fluorescent Assay v2 filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • miRNAscope Assay Red (1) Apply miRNAscope Assay Red filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit V3 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit V3 filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Neuroscience (1849) Apply Neuroscience filter
  • Cancer (1385) Apply Cancer filter
  • Development (509) Apply Development filter
  • Inflammation (472) Apply Inflammation filter
  • Infectious Disease (410) Apply Infectious Disease filter
  • Other (406) Apply Other filter
  • Stem Cells (258) Apply Stem Cells filter
  • Covid (237) Apply Covid filter
  • Infectious (220) Apply Infectious filter
  • HPV (187) Apply HPV filter
  • lncRNA (135) Apply lncRNA filter
  • Metabolism (91) Apply Metabolism filter
  • Developmental (83) Apply Developmental filter
  • Stem cell (78) Apply Stem cell filter
  • Immunotherapy (72) Apply Immunotherapy filter
  • Other: Methods (67) Apply Other: Methods filter
  • HIV (64) Apply HIV filter
  • CGT (62) Apply CGT filter
  • Pain (62) Apply Pain filter
  • diabetes (57) Apply diabetes filter
  • LncRNAs (46) Apply LncRNAs filter
  • Aging (43) Apply Aging filter
  • Other: Heart (40) Apply Other: Heart filter
  • Reproduction (38) Apply Reproduction filter
  • Endocrinology (34) Apply Endocrinology filter
  • Other: Metabolism (32) Apply Other: Metabolism filter
  • Obesity (29) Apply Obesity filter
  • Other: Lung (29) Apply Other: Lung filter
  • Behavior (27) Apply Behavior filter
  • Kidney (27) Apply Kidney filter
  • Other: Kidney (27) Apply Other: Kidney filter
  • Alzheimer's Disease (26) Apply Alzheimer's Disease filter
  • Bone (24) Apply Bone filter
  • Stress (21) Apply Stress filter
  • Other: Zoological Disease (20) Apply Other: Zoological Disease filter
  • Regeneration (20) Apply Regeneration filter
  • Skin (20) Apply Skin filter
  • Heart (19) Apply Heart filter
  • Liver (19) Apply Liver filter
  • Lung (19) Apply Lung filter
  • Fibrosis (17) Apply Fibrosis filter
  • Other: Liver (17) Apply Other: Liver filter
  • Psychiatry (17) Apply Psychiatry filter
  • behavioral (16) Apply behavioral filter
  • Other: Endocrinology (16) Apply Other: Endocrinology filter
  • Other: Skin (16) Apply Other: Skin filter
  • Injury (15) Apply Injury filter
  • Anxiety (14) Apply Anxiety filter
  • Memory (14) Apply Memory filter
  • Reproductive Biology (14) Apply Reproductive Biology filter

Product sub type

  • Target Probes (256568) Apply Target Probes filter
  • Control Probe - Automated Leica (409) Apply Control Probe - Automated Leica filter
  • Control Probe - Automated Leica Multiplex (284) Apply Control Probe - Automated Leica Multiplex filter
  • Control Probe - Automated Leica Duplex (168) Apply Control Probe - Automated Leica Duplex filter
  • Control Probe- Manual RNAscope Multiplex (148) Apply Control Probe- Manual RNAscope Multiplex filter
  • Control Probe - Automated Ventana (143) Apply Control Probe - Automated Ventana filter
  • Control Probe - Manual RNAscope Singleplex (142) Apply Control Probe - Manual RNAscope Singleplex filter
  • Control Probe - Manual RNAscope Duplex (137) Apply Control Probe - Manual RNAscope Duplex filter
  • Control Probe (73) Apply Control Probe filter
  • Control Probe - Manual BaseScope Singleplex (51) Apply Control Probe - Manual BaseScope Singleplex filter
  • Control Probe - VS BaseScope Singleplex (41) Apply Control Probe - VS BaseScope Singleplex filter
  • Control Probe - LS BaseScope Singleplex (40) Apply Control Probe - LS BaseScope Singleplex filter
  • L-HBsAG (15) Apply L-HBsAG filter
  • Cancer (13) Apply Cancer filter
  • Automated Assay 2.5: Leica System (8) Apply Automated Assay 2.5: Leica System filter
  • Control Probe- Manual BaseScope Duplex (8) Apply Control Probe- Manual BaseScope Duplex filter
  • 1765 (8) Apply 1765 filter
  • 1379 (8) Apply 1379 filter
  • 2184 (8) Apply 2184 filter
  • 38322 (8) Apply 38322 filter
  • Manual Assay 2.5: Pretreatment Reagents (5) Apply Manual Assay 2.5: Pretreatment Reagents filter
  • Controls: Manual Probes (5) Apply Controls: Manual Probes filter
  • Control Probe- Manual RNAscope HiPlex (5) Apply Control Probe- Manual RNAscope HiPlex filter
  • Manual Assay RNAscope Brown (4) Apply Manual Assay RNAscope Brown filter
  • Manual Assay RNAscope Duplex (4) Apply Manual Assay RNAscope Duplex filter
  • Manual Assay RNAscope Multiplex (4) Apply Manual Assay RNAscope Multiplex filter
  • Manual Assay BaseScope Red (4) Apply Manual Assay BaseScope Red filter
  • IA: Other (4) Apply IA: Other filter
  • Control Probe - Manual BaseScope Duplex (4) Apply Control Probe - Manual BaseScope Duplex filter
  • Manual Assay miRNAscope Red (4) Apply Manual Assay miRNAscope Red filter
  • Automated Assay 2.5: Ventana System (3) Apply Automated Assay 2.5: Ventana System filter
  • IA: Other Accessories (3) Apply IA: Other Accessories filter
  • Control Probe - Automated Ventana Duplex (3) Apply Control Probe - Automated Ventana Duplex filter
  • Manual Assay BaseScope Duplex (3) Apply Manual Assay BaseScope Duplex filter
  • Manual Assay RNAscope Red (2) Apply Manual Assay RNAscope Red filter
  • Controls: Control Slides (2) Apply Controls: Control Slides filter
  • Control Probe- Manual BaseScope Singleplex (2) Apply Control Probe- Manual BaseScope Singleplex filter
  • Control Probe - Manual BaseScope™Singleplex (2) Apply Control Probe - Manual BaseScope™Singleplex filter
  • Manual Assay: Accessory Reagent (1) Apply Manual Assay: Accessory Reagent filter
  • Accessory Reagent (1) Apply Accessory Reagent filter
  • Controls: Manual RNAscope Multiplex (1) Apply Controls: Manual RNAscope Multiplex filter
  • IA: HybEZ (1) Apply IA: HybEZ filter
  • Automated Assay BaseScope: LS (1) Apply Automated Assay BaseScope: LS filter
  • Automated Assay BaseScope: VS (1) Apply Automated Assay BaseScope: VS filter
  • Software: RNAscope HiPlex Image Registration (1) Apply Software: RNAscope HiPlex Image Registration filter
  • miRNAscope Automated Assay: Leica System (1) Apply miRNAscope Automated Assay: Leica System filter
  • Automated Assay: VS (1) Apply Automated Assay: VS filter
  • Control Probe - VS BaseScope™Singleplex (1) Apply Control Probe - VS BaseScope™Singleplex filter
  • Controls:2.5VS Probes (1) Apply Controls:2.5VS Probes filter
  • Control Probe - Manual RNAscope Multiplex (1) Apply Control Probe - Manual RNAscope Multiplex filter

Sample Compatibility

  • Cell pellets (49) Apply Cell pellets filter
  • FFPE (41) Apply FFPE filter
  • Fixed frozen tissue (31) Apply Fixed frozen tissue filter
  • TMA (31) Apply TMA filter
  • Adherent cells (26) Apply Adherent cells filter
  • Freshfrozen tissue (18) Apply Freshfrozen tissue filter
  • Fresh frozen tissue (13) Apply Fresh frozen tissue filter
  • Cell Cultures (12) Apply Cell Cultures filter
  • TMA(Tissue Microarray) (9) Apply TMA(Tissue Microarray) filter
  • FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells (7) Apply FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells filter
  • CTC (4) Apply CTC filter
  • PBMC's (4) Apply PBMC's filter
  • Adherent or Cultured Cells (1) Apply Adherent or Cultured Cells filter
  • Fixed frozen (1) Apply Fixed frozen filter
  • FFPE,TMA (1) Apply FFPE,TMA filter
  • Fixed frozen tissues (for chromogenic assays) (1) Apply Fixed frozen tissues (for chromogenic assays) filter

Category

  • Publications (7110) Apply Publications filter

Application

  • Cancer (139875) Apply Cancer filter
  • Neuroscience (51010) Apply Neuroscience filter
  • Cancer, Neuroscience (32227) Apply Cancer, Neuroscience filter
  • Non-coding RNA (24365) Apply Non-coding RNA filter
  • Cancer, Inflammation (16436) Apply Cancer, Inflammation filter
  • Cancer, Inflammation, Neuroscience (12591) Apply Cancer, Inflammation, Neuroscience filter
  • Inflammation (9879) Apply Inflammation filter
  • Cancer, Stem Cell (7932) Apply Cancer, Stem Cell filter
  • Cancer, Neuroscience, Stem Cell (7028) Apply Cancer, Neuroscience, Stem Cell filter
  • Cancer, Immunotherapy, Inflammation, Neuroscience, Stem Cell (6854) Apply Cancer, Immunotherapy, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Inflammation, Neuroscience, Stem Cell (5424) Apply Cancer, Inflammation, Neuroscience, Stem Cell filter
  • Immunotherapy (5368) Apply Immunotherapy filter
  • Cancer, Immunotherapy (3866) Apply Cancer, Immunotherapy filter
  • Stem Cell (3385) Apply Stem Cell filter
  • Cancer, Immunotherapy, Neuroscience, Stem Cell (3050) Apply Cancer, Immunotherapy, Neuroscience, Stem Cell filter
  • Cancer, Immunotherapy, Inflammation (2844) Apply Cancer, Immunotherapy, Inflammation filter
  • Cancer, Immunotherapy, Inflammation, Neuroscience (1878) Apply Cancer, Immunotherapy, Inflammation, Neuroscience filter
  • Cancer, Immunotherapy, Neuroscience (1786) Apply Cancer, Immunotherapy, Neuroscience filter
  • Inflammation, Neuroscience (1499) Apply Inflammation, Neuroscience filter
  • Cancer, Non-coding RNA (1142) Apply Cancer, Non-coding RNA filter
  • Cancer, Immunotherapy, Inflammation, Stem Cell (1021) Apply Cancer, Immunotherapy, Inflammation, Stem Cell filter
  • Cancer,Neuroscience (940) Apply Cancer,Neuroscience filter
  • Cancer,Inflammation (777) Apply Cancer,Inflammation filter
  • Cancer, Inflammation, Stem Cell (594) Apply Cancer, Inflammation, Stem Cell filter
  • Immunotherapy, Inflammation (560) Apply Immunotherapy, Inflammation filter
  • Cancer,Inflammation,Neuroscience (424) Apply Cancer,Inflammation,Neuroscience filter
  • Cancer,Neuroscience,Stem Cell (317) Apply Cancer,Neuroscience,Stem Cell filter
  • Cancer, Immunotherapy, Stem Cell (295) Apply Cancer, Immunotherapy, Stem Cell filter
  • Cancer,Inflammation,Neuroscience,Stem Cell (259) Apply Cancer,Inflammation,Neuroscience,Stem Cell filter
  • Cancer,Stem Cell (237) Apply Cancer,Stem Cell filter
  • Cancer, Neuroscience, Neuroscience (221) Apply Cancer, Neuroscience, Neuroscience filter
  • Cancer,Immunotherapy,Inflammation,Neuroscience,Stem Cell (211) Apply Cancer,Immunotherapy,Inflammation,Neuroscience,Stem Cell filter
  • Cancer,Immunotherapy (206) Apply Cancer,Immunotherapy filter
  • Cancer,Immunotherapy,Inflammation (130) Apply Cancer,Immunotherapy,Inflammation filter
  • Neuroscience, Neuroscience (119) Apply Neuroscience, Neuroscience filter
  • Cancer,Immunotherapy,Neuroscience (113) Apply Cancer,Immunotherapy,Neuroscience filter
  • L glycoprotein (112) Apply L glycoprotein filter
  • Immunotherapy, Neuroscience (99) Apply Immunotherapy, Neuroscience filter
  • Cancer,Immunotherapy,Inflammation,Neuroscience (82) Apply Cancer,Immunotherapy,Inflammation,Neuroscience filter
  • Cancer,Immunotherapy,Neuroscience,Stem Cell (80) Apply Cancer,Immunotherapy,Neuroscience,Stem Cell filter
  • Immunotherapy,Inflammation (51) Apply Immunotherapy,Inflammation filter
  • Cancer,Non-coding RNA (48) Apply Cancer,Non-coding RNA filter
  • 4863 (41) Apply 4863 filter
  • Cancer, Neuroscience, Non-coding RNA (35) Apply Cancer, Neuroscience, Non-coding RNA filter
  • Inflammation,Neuroscience (33) Apply Inflammation,Neuroscience filter
  • HAdVC_gp16,HAdVCgp31 (32) Apply HAdVC_gp16,HAdVCgp31 filter
  • Cancer, Inflammation, Neuroscience, Non-coding RNA (31) Apply Cancer, Inflammation, Neuroscience, Non-coding RNA filter
  • Cancer,Immunotherapy,Inflammation,Stem Cell (30) Apply Cancer,Immunotherapy,Inflammation,Stem Cell filter
  • Inflammation, Non-coding RNA (30) Apply Inflammation, Non-coding RNA filter
  • Neuroscience, Non-coding RNA (29) Apply Neuroscience, Non-coding RNA filter
Revisiting the expression and function of follicle-stimulation hormone receptor in human umbilical vein endothelial cells.

Sci Rep.

2016 Nov 16

Stelmaszewska J, Chrusciel M, Doroszko M, Akerfelt M, Ponikwicka-Tyszko D, Nees M, Frentsch M, Li X, Kero J, Huhtaniemi I, Wolczynski S, Rahman NA.
PMID: 27848975 | DOI: 10.1038/srep37095

Expression of follicle-stimulation hormone receptor (FSHR) is confined to gonads and at low levels to some extragonadal tissues like human umbilical vein endothelial cells (HUVEC). FSH-FSHR signaling was shown to promote HUVEC angiogenesis and thereafter suggested to have an influential role in pregnancy. We revisited hereby the expression and functionality of FSHR in HUVECs angiogenesis, and were unable to reproduce the FSHR expression in human umbilical cord, HUVECs or immortalized HUVECs (HUV-ST). Positive controls as granulosa cells and HEK293 cells stably transfected with human FSHR cDNA expressed FSHR signal. In contrast to positive control VEGF, FSH treatment showed no effects on tube formation, nitric oxide production, wound healing or cell proliferation in HUVEC/HUV-ST. Thus, it remains open whether the FSH-FSHR activation has a direct regulatory role in the angiogenesis of HUVECs.

Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation.

Virol J.

2016 Nov 11

Phan TG, Giannitti F, Rossow S, Marthaler D, Knutson T, Li L, Deng X, Resende T, Vannucci F, Delwart E.
PMID: 27835942 | DOI: 10.1186/s12985-016-0642-z

Abstract

BACKGROUND:

Porcine circovirus 2 causes different clinical syndromes resulting in a significant economic loss in the pork industry. Three pigs with unexplained cardiac and multi-organ inflammation that tested negative for PCV2 and other known porcine pathogens were further analyzed.

METHODS:

Histology was used to identify microscopic lesions in multiple tissues. Metagenomics was used to detect viral sequences in tissue homogenates. In situ hybridization was used to detect viral RNA expression in cardiac tissue.

RESULTS:

In all three cases we characterized the genome of a new circovirus we called PCV3 with a replicase and capsid proteins showing 55 and 35 % identities to the genetically-closest proteins from a bat-feces associated circovirus and were even more distant to those of porcine circovirus 1 and 2. Common microscopic lesions included non-suppurative myocarditis and/or cardiac arteriolitis. Viral mRNA was detected intralesionally in cardiac cells. Deep sequencing in tissues also revealed the presence of porcine astrovirus 4 in all three animals as well as rotavirus A, porcine cytomegalovirus and porcine hemagglutinating encephalomyelitis virus in individual cases.

CONCLUSION:

The pathogenicity and molecular epidemiology of this new circovirus, alone or in the context of co-infections, warrants further investigations.

Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping

Front. Neural Circuits

2016 Nov 18

Hernández VS, Hernández OR, Perez de la Mora M, Gómora ML, Fuxe K, Eiden LE, Zhang L.
PMID: - | DOI: 10.3389/fncir.2016.00092

The arginine-vasopressin (AVP)-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs) are known for their role in hydro-electrolytic balance control via their projections to the neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula and other brain regions in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA). The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS), consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptor mRNAs were not detected, using the same method. Water-deprivation (WD) for 24 h, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze (EPM) test, and this effect was mimicked by bilateral microinfusion of AVP into the CeA. Anxious behavior induced by either WD or AVP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of CeA inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.

Lack of Diaph3 relaxes the spindle checkpoint causing the loss of neural progenitors.

Nat Commun.

2016 Nov 16

Damiani D, Goffinet AM, Alberts A, Tissir F.
PMID: 27848932 | DOI: 10.1038/ncomms13509

The diaphanous homologue Diaph3 (aka mDia2) is a major regulator of actin cytoskeleton. Loss of Diaph3 has been constantly associated with cytokinesis failure ascribed to impaired accumulation of actin in the cleavage furrow. Here we report that Diaph3 is required before cell fission, to ensure the accurate segregation of chromosomes. Inactivation of the Diaph3 gene causes a massive loss of cortical progenitor cells, with subsequent depletion of intermediate progenitors and neurons, and results in microcephaly. In embryonic brain extracts, Diaph3 co-immunoprecipitates with BubR1, a key regulator of the spindle assembly checkpoint (SAC). Diaph3-deficient cortical progenitors have decreased levels of BubR1 and fail to properly activate the SAC. Hence, they bypass mitotic arrest and embark on anaphase in spite of incorrect chromosome segregation, generating aneuploidy. Our data identify Diaph3 as a major guard of cortical progenitors, unravel novel functions of Diaphanous formins and add insights into the pathobiology of microcephaly.

Zika virus infection damages the testes in mice.

Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH, Diamond MS.

2016 Oct 31

Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH, Diamond MS.
PMID: 27798603 | DOI: 10.1038/nature20556

Zika virus (ZIKV) infection of pregnant women can cause congenital malformations including microcephaly, which has focused global attention on this emerging pathogen1. In addition to transmission by mosquitoes, ZIKV can be detected in the seminal fluid of affected males for extended periods of time and transmitted sexually2. Here, using a mouse-adapted African ZIKV strain (Dakar 41519), we evaluated the consequences of infection in the male reproductive tract of mice. We observed persistence of ZIKV, but not the closely related Dengue virus (DENV), in the testis and epididymis of male mice, and this was associated with tissue injury that caused diminished testosterone and inhibin B levels, and oligospermia. ZIKV preferentially infected spermatogonia, primary spermatocytes, and Sertoli cells in the testis, resulting in cell death and destruction of the seminiferous tubules. Less damage was observed with a contemporary Asian ZIKV strain (H/PF/2013), in part because this virus replicates less efficiently in mice. The extent to which these observations in mice translate to humans remains unclear, but longitudinal studies of sperm function and viability in ZIKV-infected humans seem warranted.

Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours.

Nat Cell Biol.

2016 Oct 31

Blaas L, Pucci F, Messal HA, Andersson AB, Josue Ruiz E, Gerling M, Douagi I, Spencer-Dene B, Musch A, Mitter R, Bhaw L, Stone R, Bornhorst D, Sesay AK, Jonkers J, Stamp G, Malanchi I, Toftgård R, Behrens A.
PMID: 27798604 | DOI: 10.1038/ncb3434

The mammary gland is composed of a complex cellular hierarchy with unusual postnatal plasticity. The identities of stem/progenitor cell populations, as well as tumour-initiating cells that give rise to breast cancer, are incompletely understood. Here we show that Lgr6 marks rare populations of cells in both basal and luminal mammary gland compartments in mice. Lineage tracing analysis showed that Lgr6+ cells are unipotent progenitors, which expand clonally during puberty but diminish in adulthood. In pregnancy or following stimulation with ovarian hormones, adult Lgr6+ cells regained proliferative potency and their progeny formed alveoli over repeated pregnancies. Oncogenic mutations in Lgr6+ cells resulted in expansion of luminal cells, culminating in mammary gland tumours. Conversely, depletion of Lgr6+ cells in the MMTV-PyMT model of mammary tumorigenesis significantly impaired tumour growth. Thus, Lgr6 marks mammary gland progenitor cells that can initiate tumours, and cells of luminal breast tumours required for efficient tumour maintenance.

A Balance between Secreted Inhibitors and Edge Sensing Controls Gastruloid Self-Organization.

Dev Cell.

2016 Nov 07

Etoc F, Metzger J, Ruzo A, Kirst C, Yoney A, Ozair MZ, Brivanlou AH, Siggia ED.
PMID: 27746044 | DOI: 10.1016/j.devcel.2016.09.016

The earliest aspects of human embryogenesis remain mysterious. To model patterning events in the human embryo, we used colonies of human embryonic stem cells (hESCs) grown on micropatterned substrate and differentiated with BMP4. These gastruloids recapitulate the embryonic arrangement of the mammalian germ layers and provide an assay to assess the structural and signaling mechanisms patterning the human gastrula. Structurally, high-density hESCs localize their receptors to transforming growth factor β at their lateral side in the center of the colony while maintaining apical localization of receptors at the edge. This relocalization insulates cells at the center from apically applied ligands while maintaining response to basally presented ones. In addition, BMP4 directly induces the expression of its own inhibitor, NOGGIN, generating a reaction-diffusion mechanism that underlies patterning. We develop a quantitative model that integrates edge sensing and inhibitors to predict human fate positioning in gastruloids and, potentially, the human embryo.

Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes.

Cell Metab.

2016 Oct 11

Segerstolpe Å, Palasantza A, Eliasson P, Andersson EM, Andréasson AC, Sun X, Picelli S, Sabirsh A, Clausen M, Bjursell MK, Smith DM, Kasper M, Ämmälä C, Sandberg R.
PMID: 27667667 | DOI: 10.1016/j.cmet.2016.08.020

Hormone-secreting cells within pancreatic islets of Langerhans play important roles in metabolic homeostasis and disease. However, their transcriptional characterization is still incomplete. Here, we sequenced the transcriptomes of thousands of human islet cells from healthy and type 2 diabetic donors. We could define specific genetic programs for each individual endocrine and exocrine cell type, even for rare δ, γ, ε, and stellate cells, and revealed subpopulations of α, β, and acinar cells. Intriguingly, δ cells expressed several important receptors, indicating an unrecognized importance of these cells in integrating paracrine and systemic metabolic signals. Genes previously associated with obesity or diabetes were found to correlate with BMI. Finally, comparing healthy and T2D transcriptomes in a cell-type resolved manner uncovered candidates for future functional studies. Altogether, our analyses demonstrate the utility of the generated single-cell gene expression resource.

Warm-Sensitive Neurons that Control Body Temperature.

Cell.

2016 Sep 22

Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA.
PMID: 27616062 | DOI: 10.1016/j.cell.2016.08.028

Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals.

Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice.

Nature.

2016 Nov 07

Sapparapu G, Fernandez E, Kose N, Cao B, Fox JM, Bombardi RG, Zhao H, Nelson CA, Bryan AL, Barnes T, Davidson E, Mysorekar IU, Fremont DH, Doranz BJ, Diamond MS, Crowe JE.
PMID: 27819683 | DOI: 10.1038/nature20564

Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease, including congenital birth defects during pregnancy1. To develop candidate therapeutic agents against ZIKV, we isolated a panel of human monoclonal antibodies (mAbs) from subjects with prior ZIKV infection. A subset of mAbs recognized diverse epitopes on the envelope (E) protein and exhibited potently neutralizing activity. One of the most inhibitory mAbs, ZIKV-117, broadly neutralized infection of ZIKV strains corresponding to African, Asian, and American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. mAb treatment markedly reduced tissue pathology, placental and fetal infection, and mortality in mice. Thus, neutralizing human mAbs can protect against maternal-fetal transmission, infection and disease, and reveal important determinants for structure-based rational vaccine design efforts.

NRL-Regulated Transcriptome Dynamics of Developing Rod Photoreceptors.

Cell Rep.

2016 Nov 22

Kim JW, Yang HJ, Brooks MJ, Zelinger L, Karakülah G, Gotoh N, Boleda A, Gieser L, Giuste F, Whitaker DT, Walton A, Villasmil R, Barb JJ, Munson PJ, Kaya KD, Chaitankar V, Cogliati T, Swaroop A.
PMID: 27880916 | DOI: 10.1016/j.celrep.2016.10.074

Gene regulatory networks (GRNs) guiding differentiation of cell types and cell assemblies in the nervous system are poorly understood because of inherent complexities and interdependence of signaling pathways. Here, we report transcriptome dynamics of differentiating rod photoreceptors in the mammalian retina. Given that the transcription factor NRL determines rod cell fate, we performed expression profiling of developing NRL-positive (rods) and NRL-negative (S-cone-like) mouse photoreceptors. We identified a large-scale, sharp transition in the transcriptome landscape between postnatal days 6 and 10 concordant with rod morphogenesis. Rod-specific temporal DNA methylation corroborated gene expression patterns. De novo assembly and alternative splicing analyses revealed previously unannotated rod-enriched transcripts and the role of NRL in transcript maturation. Furthermore, we defined the relationship of NRL with other transcriptional regulators and downstream cognate effectors. Our studies provide the framework for comprehensive system-level analysis of the GRN underlying the development of a single sensory neuron, the rod photoreceptor.

The hot-spot p53R172H mutant promotes formation of giant spermatogonia triggered by DNA damage

Oncogene.

2016 Nov 21

Xue Y, Raharja A, Sim W, Wong ES, Rahmat SA, Lane DP.
PMID: 27869164 | DOI: 10.1038/onc.2016.374

Overexpression of mutant p53 is a common finding in most cancers but testicular tumours accumulate wild-type p53 (wtp53). In contrast to the accepted concept that p53 homozygous mutant mice do not accumulate mutant p53 in normal cells, our study on a mutant p53 mouse model of Li-Fraumeni syndrome harbouring the hot-spot p53R172H mutation described an elevated level of mutant p53 in non-cancerous mouse tissues. Here we use detailed immunohistochemical analysis to document the expression of p53R172H in mouse testis. In developing and adult testes, p53R172H was expressed in gonocytes, type A, Int, B spermatogonia as well as in pre-Sertoli cells and Leydig cells but was undetectable in spermatocytes and spermatids. A similar staining pattern was demonstrated for wtp53. However, the intensity of wtp53 staining was generally weaker than that of p53R172H, which indicates that the expression of p53R172H can be a surrogate marker of p53 gene transcription. Comparing the responses of wtp53 and p53R172H to irradiation, we found persistent DNA double-strand breaks in p53R172H testes and the formation of giant spermatogonia (GSG) following persistent DNA damage in p53R172H and p53-null mice. Strikingly, we found that p53R172H promotes spontaneous formation of GSG in non-stressed p53R172H ageing mice. Two types of GSG: Viable and Degenerative GSG were defined. We elucidate the factors involved in the formation of GSG: the loss of p53 function is a requirement for the formation of GSG whereas DNA damage acts as a promoting trigger. The formation of GSG does not translate to higher efficacy of testicular tumorigenesis arising from mutant p53 cells, which might be due to the presence of delayed-onset of p53-independent apoptosis.

Pages

  • « first
  • ‹ previous
  • …
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?