Structure (London, England : 1993)
Sander, CL;Luu, J;Kim, K;Furkert, D;Jang, K;Reichenwallner, J;Kang, M;Lee, HJ;Eger, BT;Choe, HW;Fiedler, D;Ernst, OP;Kim, YJ;Palczewski, K;Kiser, PD;
PMID: 34678158 | DOI: 10.1016/j.str.2021.10.002
Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.
Journal of molecular and cellular cardiology
Mohenska, M;Tan, NM;Tokolyi, A;Furtado, MB;Costa, MW;Perry, AJ;Hatwell-Humble, J;van Duijvenboden, K;Nim, HT;Ji, YMM;Charitakis, N;Bienroth, D;Bolk, F;Vivien, C;Knaupp, AS;Powell, DR;Elliott, DA;Porrello, ER;Nilsson, SK;Del Monte-Nieto, G;Rosenthal, NA;Rossello, FJ;Polo, JM;Ramialison, M;
PMID: 34624332 | DOI: 10.1016/j.yjmcc.2021.09.011
Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.
Bakalar, D;Sweat, S;Drossel, G;Jiang, S;Samal, B;Stroth, N;Xu, W;Zhang, L;Zhang, H;Eiden, L;
| DOI: 10.1016/j.psyneuen.2021.105447
Since the advent of gene knock-out technology in 1987, insight into the role(s) of neuropeptides in centrally- and peripherally-mediated physiological regulation has been gleaned by examining altered physiological functioning in mammals, predominantly mice, after genetic editing to produce animals deficient in neuropeptides or their cognate G-protein coupled receptors (GPCRs). These results have complemented experiments involving infusion of neuropeptide agonists or antagonists systemically or into specific brain regions. Effects of gene loss are often interpreted as indicating that the peptide and its receptor(s) are required for the physiological or behavioral responses elicited in wild-type mice at the time of experimental examination. These interpretations presume that peptide/peptide receptor gene deletion affects only the expression of the peptide/receptor itself, and therefore impacts physiological events only at the time at which the experiment is conducted. A way to support ‘real-time’ interpretations of neuropeptide gene knock-out is to demonstrate that the wild-type transcriptome, except for the deliberately deleted gene(s), in tissues of interest, is preserved in the knock-out mouse. Here, we show that there is a cohort of genes (constitutively PACAP-Regulated Genes, or cPRGs) whose basal expression is affected by constitutive knock-out of the Adcyap1 gene in C57Bl6/N mice, and additional genes whose expression in response to physiological challenge, in adults, is altered or impaired in the absence of PACAP expression (acutely PACAP-Regulated Genes, or aPRGs). Distinguishing constitutive and acute transcriptomic effects of neuropeptide deficiency on physiological function and behavior in mice reveals alternative mechanisms of action, and changing functions of neuropeptides, throughout the lifespan.
Toxicological sciences : an official journal of the Society of Toxicology
Wolf, B;Jeliazkova-Mecheva, V;Del Rio-Espinola, A;Boisclair, J;Walker, D;Cochin De Billy, B;Flaherty, M;Flandre, T;
PMID: 34687301 | DOI: 10.1093/toxsci/kfab124
To assess the safety and tolerability of NVS32b, a monoclonal, afucosylated, anti-CD32b (FCGR2B) antibody we used a humanized transgenic (Tg) mouse model that expresses all human Fc gamma receptors (FCGRs) while lacking all mouse FCGRs. Prior to its use, we extensively characterized the model. We found expression of all human FCGRs in a pattern similar to humans with some exceptions, such as low CD32 expression on T cells (detected with the pan CD32 antibody but more notably with the CD32b-specific antibody), variation in the transgene copy number, integration of additional human genes, and overall higher expression of all FCGRs on myeloid cells compared to human. Unexpectedly, NVS32b induced severe acute generalized thrombosis in huFCGR mice upon iv dosing. Mechanistic evaluation on huFCGR and human platelets revealed distinct binding, activation and aggregation driven by NVS32b in both species. In huFCGR mice, the anti-CD32b antibody NVS32b binds platelet CD32a via both Fc and/or CDR (complementarity determining region) causing their activation while in human, NVS32b-binding requires platelet pre-activation and interaction of platelet CD32a via the Fc portion and an unknown platelet epitope via the CDR portion of NVS32b. We deemed the huFCGR mice to be over-predictive of the NVS32b-associated human thrombotic risk. Impact: In this study we elucidated the mechanism based on the thrombotic adverse events observed in huFCGR mice upon NVS32B dosing and were able to identify this safety liability which led to program termination. Therefore, this mouse model could be useful in research of immunotherapies targeting or involving FCGRs. Potential biological implications resulting from species differences in the FCGR expression pattern are nevertheless important to consider.
Mazzone, SB;Yang, SK;Keller, JA;Simanauskaite, J;Arikkatt, J;Fogarty, MJ;Moe, AAK;Chen, C;Trewella, MW;Tian, L;Ritchie, ME;Chua, BY;Phipps, S;Short, KR;McGovern, AE;
PMID: 34621188 | DOI: 10.3389/fphys.2021.744812
Vagal sensory neurons contribute to the symptoms and pathogenesis of inflammatory pulmonary diseases through processes that involve changes to their morphological and functional characteristics. The alarmin high mobility group box-1 (HMGB1) is an early mediator of pulmonary inflammation and can have actions on neurons in a range of inflammatory settings. We hypothesized that HMGB1 can regulate the growth and function of vagal sensory neurons and we set out to investigate this and the mechanisms involved. Culturing primary vagal sensory neurons from wildtype mice in the presence of HMGB1 significantly increased neurite outgrowth, while acute application of HMGB1 to isolated neurons under patch clamp electrophysiological investigation produced inward currents and enhanced action potential firing. Transcriptional analyses revealed the expression of the cognate HMGB1 receptors, Receptor for Advanced Glycation End products (RAGE) and Toll-like Receptor 4 (TLR4), in subsets of vagal sensory neurons. HMGB1-evoked growth and electrophysiological responses were significantly reduced in primary vagal sensory neurons harvested from RAGE deficient mice and completely absent in neurons from RAGE/TLR4 double deficient mice. Immunohistochemical analysis of vagal sensory neurons collected from mice after intranasal infection with murine pneumovirus or influenza A virus (IAV), or after intratracheal administration with the viral mimetic PolyI:C, revealed a significant increase in nuclear-to-cytoplasm translocation of HMGB1 compared to mock-inoculated mice. Neurons cultured from virus infected wildtype mice displayed a significant increase in neurite outgrowth, which was not observed for neurons from virus infected RAGE or RAGE/TLR4 deficient mice. These data suggest that HMGB1 can enhance vagal sensory neuron growth and excitability, acting primarily via sensory neuron RAGE. Activation of the HMGB1-RAGE axis in vagal sensory neurons could be an important mechanism leading to vagal hyperinnervation and hypersensitivity in chronic pulmonary disease.
Molecular Therapy - Methods & Clinical Development
Steward, O;Coulibaly, A;Metcalfe, M;Dam, J;Yee, K;
| DOI: 10.1016/j.omtm.2021.09.016
AAV vectors are being used extensively for gene-modifying therapies for neurological disorders. Here, we report the surprising discovery that injections of different AAVs into the brain, spinal cord, or cerebrospinal fluid (CSF) lead to robust transduction of cells in the pineal gland. We document transduction of cells in the pineal gland following focal injections of AAV2/9-shPTEN-zsGreen into the sensorimotor or hippocampus of rats and injections of AAV2/Cre into the spinal cord of transgenic mice with a stop-flox tdT reporter. Pineal transduction was evident even when AAV2/Cre injections were made into the lumbar spinal cord many millimeters distant from the pineal gland. Immunostaining with antibodies for cell types in the pineal gland revealed that pinealocytes were transduced. Pineal transduction was also observed with intracerebroventricular (i.c.v.) injections of AAV2/9-shPTEN-zsGreen, suggesting that pineal transduction following focal injections of AAV into CNS parenchyma may be caused by diffusion of the vector from the injection sites into the CSF and then accumulation in the pineal gland. Together, these findings suggest the need for vigilance for functional consequences and possible adverse effects of off-target accumulation of therapeutic AAVs in the pineal gland and AAV-driven expression of therapeutic cargos in pinealocytes.
ACS chemical neuroscience
Shi, Y;Jin, Y;Li, X;Chen, C;Zhang, Z;Liu, X;Deng, Y;Fan, X;Wang, C;
PMID: 34637270 | DOI: 10.1021/acschemneuro.1c00244
C5a receptor 1 (C5aR1) can induce a strong inflammatory response to an injury. Targeting C5aR1 has emerged as a novel anti-inflammatory therapeutic method. However, the role of C5aR1 in cerebral ischemia and reperfusion (I/R) injury and the definitive mechanism have not been elucidated clearly. Here, we determined whether C5aR1 signaling was essential to the post-ischemic inflammation and brain injury and whether it is a valid target for therapeutic blockade by using soluble receptor antagonist PMX53 in the early stage after I/R injury. In an in vitro model (oxygen and glucose deprivation and reperfusion, OGD/R) and in vivo model (middle cerebral artery occlusion and reperfusion, MCAO/R) of I/R, the neuronal cells of rats showed significantly up-regulated gene expression of C5aR1, and a notable inflammatory response was demonstrated with elevated tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. Inhibition of C5aR1 by PMX53 treatment significantly reduced cell injury and inflammation and promoted brain function recovery. Further mechanism studies showed that inhibiting C5aR1 by PMX53 protected the rats from MCAO/R injury, decreased cell inflammation, and apoptosis via inhibiting the TLR4 and NF-κB signaling pathway and reducing the production of TNF-α, IL-1β, and IL-6 in MCAO/R rats. In addition, manipulation of the C5aR1 gene expression in vitro displayed that the inflammatory cascade signals including TLR4, TNF-α, IL-1β, and IL-6 were coincidently regulated with the regulation of C5aR1 expression levels. Thus, our results demonstrated a pathogenic role for C5aR1 in the progression of brain injury and inflammation response following I/R injury. Our study clearly demonstrated that C5aR1 inhibition might be an effective treatment strategy for ischemic stroke.
Liang, T;Hu, Y;Zhang, H;Xu, Q;Smith, CE;Zhang, C;Kim, JW;Wang, SK;Saunders, TL;Lu, Y;Hu, JC;Simmer, JP;
PMID: 34667213 | DOI: 10.1038/s41598-021-00219-4
Non-syndromic inherited defects of tooth dentin are caused by two classes of dominant negative/gain-of-function mutations in dentin sialophosphoprotein (DSPP): 5' mutations affecting an N-terminal targeting sequence and 3' mutations that shift translation into the - 1 reading frame. DSPP defects cause an overlapping spectrum of phenotypes classified as dentin dysplasia type II and dentinogenesis imperfecta types II and III. Using CRISPR/Cas9, we generated a Dspp-1fs mouse model by introducing a FLAG-tag followed by a single nucleotide deletion that translated 493 extraneous amino acids before termination. Developing incisors and/or molars from this mouse and a DsppP19L mouse were characterized by morphological assessment, bSEM, nanohardness testing, histological analysis, in situ hybridization and immunohistochemistry. DsppP19L dentin contained dentinal tubules but grew slowly and was softer and less mineralized than the wild-type. DsppP19L incisor enamel was softer than normal, while molar enamel showed reduced rod/interrod definition. Dspp-1fs dentin formation was analogous to reparative dentin: it lacked dentinal tubules, contained cellular debris, and was significantly softer and thinner than Dspp+/+ and DsppP19L dentin. The Dspp-1fs incisor enamel appeared normal and was comparable to the wild-type in hardness. We conclude that 5' and 3' Dspp mutations cause dental malformations through different pathological mechanisms and can be regarded as distinct disorders.
Obst, J;Hall-Roberts, HL;Smith, TB;Kreuzer, M;Magno, L;Di Daniel, E;Davis, JB;Mead, E;
PMID: 34615897 | DOI: 10.1038/s41598-021-96144-7
Human genetic studies have linked rare coding variants in microglial genes, such as TREM2, and more recently PLCG2 to Alzheimer's disease (AD) pathology. The P522R variant in PLCG2 has been shown to confer protection for AD and to result in a subtle increase in enzymatic activity. PLCγ2 is a key component of intracellular signal transduction networks and induces Ca2+ signals downstream of many myeloid cell surface receptors, including TREM2. To explore the relationship between PLCγ2 and TREM2 and the role of PLCγ2 in regulating immune cell function, we generated human induced pluripotent stem cell (iPSC)- derived macrophages from isogenic lines with homozygous PLCG2 knockout (Ko). Stimulating TREM2 signalling using a polyclonal antibody revealed a complete lack of calcium flux and IP1 accumulation in PLCγ2 Ko cells, demonstrating a non-redundant role of PLCγ2 in calcium release downstream of TREM2. Loss of PLCγ2 led to broad changes in expression of several macrophage surface markers and phenotype, including reduced phagocytic activity and survival, while LPS-induced secretion of the inflammatory cytokines TNFα and IL-6 was unaffected. We identified additional deficits in PLCγ2- deficient cells that compromised cellular adhesion and migration. Thus, PLCγ2 is key in enabling divergent cellular functions and might be a promising target to increase beneficial microglial functions.
Rypdal, KB;Erusappan, PM;Melleby, AO;Seifert, DE;Palmero, S;Strand, ME;Tønnessen, T;Dahl, CP;Almaas, V;Hubmacher, D;Apte, SS;Christensen, G;Lunde, IG;
PMID: 34611183 | DOI: 10.1038/s41598-021-99032-2
Fibrosis accompanies most heart diseases and is associated with adverse patient outcomes. Transforming growth factor (TGF)β drives extracellular matrix remodelling and fibrosis in the failing heart. Some members of the ADAMTSL (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs-like) family of secreted glycoproteins bind to matrix microfibrils, and although their function in the heart remains largely unknown, they are suggested to regulate TGFβ activity. The aims of this study were to determine ADAMTSL2 levels in failing hearts, and to elucidate the role of ADAMTSL2 in fibrosis using cultured human cardiac fibroblasts (CFBs). Cardiac ADAMTSL2 mRNA was robustly increased in human and experimental heart failure, and mainly expressed by fibroblasts. Over-expression and treatment with extracellular ADAMTSL2 in human CFBs led to reduced TGFβ production and signalling. Increased ADAMTSL2 attenuated myofibroblast differentiation, with reduced expression of the signature molecules α-smooth muscle actin and osteopontin. Finally, ADAMTSL2 mitigated the pro-fibrotic CFB phenotypes, proliferation, migration and contractility. In conclusion, the extracellular matrix-localized glycoprotein ADAMTSL2 was upregulated in fibrotic and failing hearts of patients and mice. We identified ADAMTSL2 as a negative regulator of TGFβ in human cardiac fibroblasts, inhibiting myofibroblast differentiation and pro-fibrotic properties.
Chen, Q;Huang, XY;Tian, Y;Fan, C;Sun, M;Zhou, C;Li, R;Zhang, RR;Wu, G;Qin, CF;
PMID: 34569016 | DOI: 10.1007/s12250-021-00452-1
The American journal of pathology
Liu, DX;Cooper, TK;Perry, DL;Huzella, LM;Hischak, AM;Hart, RJ;Isic, N;Byrum, R;Ragland, D;St Claire, M;Cooper, K;Reeder, R;Logue, J;Jahrling, PB;Holbrook, MR;Bennett, RS;Hensley, LE;
PMID: 34626576 | DOI: 10.1016/j.ajpath.2021.09.009
The pathogenesis of Ebola virus disease (EVD) is still incomplete, although the non-human primate model has been studied for more than 4 decades. To further investigate EVD pathogenesis, a natural history study has been conducted using 27 Chinese-origin rhesus macaques. Of them, 24 macaques were exposed intramuscularly to Kikwit Ebola virus (EBOV) and euthanized at pre-determined timepoints or when end stage clinical disease criteria were met, while 3 other sham-exposed macaques were euthanized at the study day 0. This study demonstrates for the first time that Ebola virus causes uterine cervicitis, vaginitis, posthitis, and medullary adrenalitis. Not only is Ebola virus detected in the interstitial stromal cells of the genital tract, but it is also present in the epididymal and seminal vesicular tubular epithelial cells, ectocervical and vaginal squamous epithelial cells, and seminal fluid. Furthermore, as early as day 3 after exposure, EBOV replicative intermediate RNA was detected in Kupffer cells and hepatocytes. These findings in the nonhuman model provide additional insight into potential sexual transmission, possible disruption of sympathetic hormone production, and early virus replication sites in human EVD patients.