eNeuro
2016 Sep 16
Yuan X, Huang Y, Shah S, Wu H, Gautron L.
PMID: - | DOI: 10.1523/ENEURO.0174-16.2016
Cocaine and Amphetamine-regulated Transcript (CART) is one of the most abundant neuropeptides in vagal afferents, including those involved in regulating feeding. Recent observations indicate that metabolic challenges dramatically alter the neuropeptidergic profile of CART-producing vagal afferents. Here, using confocal microscopy, we re-assessed the distribution and regulation of CART (55-102) immunoreactivity in vagal afferents of the male mouse in response to metabolic challenges, including fasting, high-fat diet feeding. Importantly, the perikarya and axons of vagal C-fibers were labeled using mice expressing channelrodhopsin-2 (ChR2-YFP) in Nav1.8-Cre-expressing neurons. In these mice, approximately 82% of the nodose ganglion neurons were labeled with ChR2-YFP. Furthermore, ChR2-YFP-labeled axons could easily be identified in the dorsovagal complex. CART (55-102) immunoreactivity was observed in 55% of the ChR2-YFP-labeled neurons in the nodose ganglion and 22% of the ChR2-YFP-labeled varicosities within the area postrema of fed, fasted and obese mice. The distribution of positive profiles was also identical across the full range of CART staining in fed, fasted and obese mice. In contrast to previous studies, fasting did not induce melanin-concentrating hormone immunoreactivity in vagal afferents. Moreover, prepro-MCH mRNA was undetectable in the nodose ganglion of fasted mice. In summary, this study showed that the perikarya and central terminals of vagal afferents are invariably enriched in CART and devoid of MCH.
Significance Statement Recent studies reported that fasting triggers vagal afferents to switch from expressing anorectic to orexigenic neuropeptides. This study failed to replicate the aforementioned observations using a combination of confocal microscopy, immunohistochemistry, and in situ hybridization. In particular, we showed that neither fasting nor diet-induced obesity influence the immunoreactivity for Cocaine and Amphetamine-regulated Transcript neuropeptide in the mouse vagal afferents. In contrast to previous studies, we also failed to detect melanin-concentrating hormone expression in the mouse vagal afferents. Overall, we reached the conclusion that the neuropeptidergic profile of the vagal afferents involved in feeding is remarkably stable in response to metabolic challenges.
Zhonghua Bing Li Xue Za Zhi.
2016 Sep 08
Zhao YH, Liu HG.
PMID: 27646894 | DOI: 10.3760/cma.j.issn.0529-5807.2016.09.010.
Cell.
2016 Sep 22
Hou XH, Hyun M, Taranda J, Huang KW, Todd E, Feng D, Atwater E, Croney D, Zeidel ML, Osten P, Sabatini BL.
PMID: 27662084 | DOI: 10.1016/j.cell.2016.08.073
Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.
Pathology - Research and Practice
2016 Sep 22
Wanga D, Fu L, Shah W, Zhang J, Yan Y, Ge X, He J, Wang Y, Xu Li.
PMID: - | DOI: dx.doi.org/10.1016/j.prp.2016.09.009
Background and aims
The causative role of high risk human papillomavirus (HR-HPV) in breast cancer development is controversial, though a number of reports have identified HR-HPV DNA in breast cancer specimens. Nevertheless, most studies to date have focused primarily on viral DNA rather than the viral transcription. The aim of this study was to investigate the presence of HR-HPV in breast cancer tissues at HPV DNA level and HPV oncogenes mRNA level by in situ hybridization (ISH).
Methods
One hundred and forty six (146) cases of breast invasive ductal carcinoma(IDC) and 83 cases of benign breast lesions were included in the study. Type specific oligonucleotide probes were used for the DNA detection of HPV 16,18 and 58 by ISH. HR-HPV oncogenes mRNA was assayed by novel RNAscope HR-HPV HR7 assay ISH. p16 protein expression was evaluated by immunohistochemistry (IHC).
Results
HR-HPV 16,18 and 58 DNA were detected in 52 out of 146 (35.6%) IDC and in 3 out of 83 (3.6%) benign breast lesions by ISH. The HR-HPV mRNAs was detected only in a few specimens with strong HPV DNA positivity(4/25) in a few scattered cancer cells with very weak punctate nuclear and/or cytoplasmic staining. p16 over-expression did not correlate with the HPV DNA positive breast cancer samples(17/52 HPVDNA+ vs 28/94 HPV DNA-, p = 0.731).
Conclusions
HR-HPVs certainly exist in breast cancer tissue with less active transcription, which implies that the causal role of HPV in breast cancer development need further study.
Cell.
2016 Sep 22
Zhong FL, Mamaï O, Sborgi L, Boussofara L, Hopkins R, Robinson K, Szeverényi I, Takeichi T, Balaji R, Lau A, Tye H, Roy K, Bonnard C, Ahl PJ, Jones LA, Baker P, Lacina L, Otsuka A, Fournie PR, Malecaze F, Lane EB, Akiyama M, Kabashima K, Connolly JE, Mast
PMID: 27662089 | DOI: 10.1016/j.cell.2016.09.001
Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.
Cell Metab.
2016 Sep 09
Xin Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C, Murphy AJ, Yancopoulos GD, Lin C, Gromada J.
PMID: 27667665 | DOI: 10.1016/j.cmet.2016.08.018
Pancreatic islet cells are critical for maintaining normal blood glucose levels, and their malfunction underlies diabetes development and progression. We used single-cell RNA sequencing to determine the transcriptomes of 1,492 human pancreatic α, β, δ, and PP cells from non-diabetic and type 2 diabetes organ donors. We identified cell-type-specific genes and pathways as well as 245 genes with disturbed expression in type 2 diabetes. Importantly, 92% of the genes have not previously been associated with islet cell function or growth. Comparison of gene profiles in mouse and human α and β cells revealed species-specific expression. All data are available for online browsing and download and will hopefully serve as a resource for the islet research community.
J Thorac Oncol.
2016 Sep 14
Yu H, Batenchuk C, Badzio A, Boyle TA, Czapiewski P, Chan DC, Lu X, Gao D, Ellison K, Kowalewski AA, Rivard CJ, Dziadziuszko R, Zhou C, Hussein M, Richards D, Wilks S, Monte M, Edenfield W, Goldschmidt J, Page R, Ulrich B, Waterhouse D, Close S, Jassem J,
PMID: 27639678 | DOI: 10.1016/j.jtho.2016.09.002
This article does not have an abstract to display.
Nat Commun.
2016 Sep 26
Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Ijichi H, Koike K.
PMID: 27667193 | DOI: 10.1038/ncomms13006
Highly repetitive tandem arrays at the centromeric and pericentromeric regions in chromosomes, previously considered silent, are actively transcribed, particularly in cancer. This aberrant expression occurs even in K-ras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To examine the biological roles of the satellite RNAs in carcinogenesis, we construct mouse PanIN-derived cells expressing major satellite (MajSAT) RNA and show increased malignant properties. We find an increase in frequency of chromosomal instability and point mutations in both genomic and mitochondrial DNA. We identify Y-box binding protein 1 (YBX1) as a protein that binds to MajSAT RNA. MajSAT RNA inhibits the nuclear translocation of YBX1 under stress conditions, thus reducing its DNA-damage repair function. The forced expression of YBX1 significantly decreases the aberrant phenotypes. These findings indicate that during the early stage of cancer development, satellite transcripts may act as 'intrinsic mutagens' by inducing YBX1 dysfunction, which may be crucial in oncogenic processes.
Arch Pathol Lab Med.
2016 Sep 28
Rosenberg AZ, Yu W, Hill DA, Reyes CA, Schwartz DA.
PMID: 27681334 | DOI: 10.5858/arpa.2016-0401-OA
Context .- The placenta is an important component in understanding the fetal response to intrauterine Zika virus infection, but the pathologic changes in this organ remain largely unknown. Hofbauer cells are fetal-derived macrophages normally present in the chorionic villous stroma. They have been implicated in a variety of physiological and pathologic processes, in particular involving infectious agents. Objectives .- To characterize the fetal and maternal responses and viral localization in the placenta following Zika virus transmission to an 11 weeks' gestation fetus. The clinical course was notable for prolonged viremia in the mother and extensive neuronal necrosis in the fetus. The fetus was delivered at 21 weeks' gestation after pregnancy termination. Design .- The placenta was evaluated by using immunohistochemistry for inflammatory cells (macrophages/monocytes [Hofbauer cells], B and T lymphocytes) and proliferating cells, and an RNA probe to Zika virus. The fetal brain and the placenta were previously found to be positive by reverse transcription-polymerase chain reaction for Zika virus RNA. Results .- The placenta demonstrated prominently enlarged, hydropic chorionic villi with hyperplasia and focal proliferation of Hofbauer cells. The degree of Hofbauer cell hyperplasia gave an exaggerated immature appearance to the villi. No acute or chronic villitis, villous necrosis, remote necroinflammatory abnormalities, chorioamnionitis, funisitis, or hemorrhages were present. An RNA probe to Zika virus was positive in villous stromal cells, presumably Hofbauer cells. Conclusions .- Zika virus placental infection induces proliferation and prominent hyperplasia of Hofbauer cells in the chorionic villi but does not elicit villous necrosis or a maternal or fetal lymphoplasmacellular or acute inflammatory cell reaction.
Sci Rep.
2016 Sep 30
Dubail J, Vasudevan D, Wang LW, Earp SE, Jenkins MW, Haltiwanger RS, Apte SS.
PMID: 27687499 | DOI: 10.1038/srep33974
Peters Plus syndrome (PPS), a congenital disorder of glycosylation, results from recessive mutations affecting the glucosyltransferase B3GLCT, leading to congenital corneal opacity and diverse extra-ocular manifestations. Together with the fucosyltransferase POFUT2, B3GLCT adds Glucoseβ1-3Fucose disaccharide to a consensus sequence in thrombospondin type 1 repeats (TSRs) of several proteins. Which of these target proteins is functionally compromised in PPS is unknown. We report here that haploinsufficiency of murine Adamts9, encoding a secreted metalloproteinase with 15 TSRs, leads to congenital corneal opacity and Peters anomaly (persistent lens-cornea adhesion), which is a hallmark of PPS. Mass spectrometry of recombinant ADAMTS9 showed that 9 of 12 TSRs with the O-fucosylation consensus sequence carried the Glucoseβ1-3Fucose disaccharide and B3GLCT knockdown reduced ADAMTS9 secretion in HEK293F cells. Together, the genetic and biochemical findings imply a dosage-dependent role for ADAMTS9 in ocular morphogenesis. Reduced secretion of ADAMTS9 in the absence of B3GLCT is proposed as a mechanism of Peters anomaly in PPS. The functional link between ADAMTS9 and B3GLCT established here also provides credence to their recently reported association with age-related macular degeneration.
Cancer Res.
2016 Sep 28
Xia T, Konno H, Barber GN.
PMID: 27680683 | DOI: 10.1158/0008-5472.CAN-16-1404
The innate immune regulator STING stimulates cytokine production in response to the presence of cytosolic DNA, which can arise following DNA damage. Extrinsic STING signaling is also needed for antigen-presenting cells (APC) to stimulate antitumor T cell immunity. Here we show that STING signaling is recurrently suppressed in melanoma cells, where this event may enable immune escape after DNA damage. Mechanistically STING signaling was suppressed most frequently by epigenetic silencing of either STING or the cyclic GMP-AMP synthase (cGAS), which generates STING-activating cyclic dinucleotides (CDNs) after binding cytosolic DNA species. Loss of STING function rendered melanoma cells unable to produce type I interferon and other immune cytokines after exposure to cytosolic DNA species. Consequently, such cells were highly susceptible to infection with DNA viruses including HSV1, a variant of which is being developed presently as a therapeutic oncolytic virus (talimogene laherparepvec [T-VEC]). Our findings provide insight into the basis for susceptibility to viral oncolysis by agents such as HSV1.
Mod Pathol.
2016 Sep 30
Son SM, Ha SY, Yoo HY, Oh D, Kim SJ, Kim WS, Ko YH.
PMID: 27687005 | DOI: 10.1038/modpathol.2016.56
The prognostic role of MYC has been well documented in non-central nervous system diffuse large B-cell lymphoma; however, it remains controversial in central nervous system diffuse large B-cell lymphoma. To investigate the prognostic value of MYC, we analyzed the MYC protein expression by immunohistochemistry, mRNA expression by RNA in situ hybridization, and gene status by fluorescence in situ hybridization in 74 cases of central nervous system diffuse large B-cell lymphoma. Moreover, we examined the correlation between MYC translocation, mRNA expression, and protein expression. The mean percentage of MYC immunopositive cells was 49%. Using a 44% cutoff value, 49 (66%) cases showed MYC protein overexpression. The result of mRNA in situ hybridization using the RNA scope technology was obtained using the H-scoring system; the median value was 34.2. Using the cutoff value of 63.5, 16 (22%) cases showed MYC mRNA overexpression. MYC gene rearrangement was detected in five out of 68 (7%) cases. MYC translocation showed no statistically significant correlation with mRNA expression; however, all MYC translocation-positive cases showed MYC protein overexpression, with a higher mean percentage of MYC protein expression than that of translocation-negative cases (78 vs 48%, P=0.001). The level of MYC mRNA expression was moderately correlated with the level of MYC protein expression (P<0.001). The mean percentage of MYC protein expression in the high MYC mRNA group was higher than that in the low MYC mRNA group (70 vs 47%, P<0.001). A univariate analysis showed that age over 60 years, Eastern Cooperative Oncology Group (ECOG) performance status ≥2 and MYC protein overexpression were significantly associated with an increased risk of death. MYC translocation and MYC mRNA expression had no prognostic significance. On multivariate analysis, MYC protein overexpression and ECOG score retained prognostic significance.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com