Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search
  • Probes for (1571451)
  • Kits & Accessories (135)
  • Support & Documents (0)
  • Publications (7110)
  • Image gallery (0)
Refine Probe List

Content for comparison

Species

  • Mouse (320919) Apply Mouse filter
  • Human (293611) Apply Human filter
  • Other (131299) Apply Other filter
  • Rat (63465) Apply Rat filter
  • Zebrafish (54667) Apply Zebrafish filter
  • Monkey (43709) Apply Monkey filter
  • Pig (17303) Apply Pig filter
  • Dog (16085) Apply Dog filter
  • Rabbit (8222) Apply Rabbit filter
  • Felis catus (7033) Apply Felis catus filter
  • Bovine (6266) Apply Bovine filter
  • Callithrix jacchus (5027) Apply Callithrix jacchus filter
  • Ovis aries (3328) Apply Ovis aries filter
  • Anolis carolinensis (3027) Apply Anolis carolinensis filter
  • Mesocricetus auratus (3019) Apply Mesocricetus auratus filter
  • Octopus bimaculoides (2731) Apply Octopus bimaculoides filter
  • Salmo salar (2711) Apply Salmo salar filter
  • Astyanax mexicanus (2665) Apply Astyanax mexicanus filter
  • Heterocephalus glaber (2596) Apply Heterocephalus glaber filter
  • Aedes aegypti (2427) Apply Aedes aegypti filter
  • Pogona vitticeps (2245) Apply Pogona vitticeps filter
  • Sorghum bicolor (1880) Apply Sorghum bicolor filter
  • Anopheles gambiae str. PEST (1759) Apply Anopheles gambiae str. PEST filter
  • Oryzias latipes (1746) Apply Oryzias latipes filter
  • Trichoplax adhaerens (1720) Apply Trichoplax adhaerens filter
  • Xenopus laevis (1534) Apply Xenopus laevis filter
  • Human papillomavirus (1523) Apply Human papillomavirus filter
  • Human herpesvirus (1465) Apply Human herpesvirus filter
  • Other virus (1461) Apply Other virus filter
  • Ixodes scapularis (1395) Apply Ixodes scapularis filter
  • Oncorhynchus mykiss (1393) Apply Oncorhynchus mykiss filter
  • Macaca nemestrina (1310) Apply Macaca nemestrina filter
  • Human immunodeficiency virus 1 (1303) Apply Human immunodeficiency virus 1 filter
  • Ginglymostoma cirratum (1163) Apply Ginglymostoma cirratum filter
  • Hepatitis B virus (1141) Apply Hepatitis B virus filter
  • Xenopus tropicalis (1138) Apply Xenopus tropicalis filter
  • Peromyscus maniculatus bairdii (1114) Apply Peromyscus maniculatus bairdii filter
  • Serinus canaria (1038) Apply Serinus canaria filter
  • Ictidomys tridecemlineatus (1028) Apply Ictidomys tridecemlineatus filter
  • Microtus ochrogaster (1024) Apply Microtus ochrogaster filter
  • Nothobranchius furzeri (1001) Apply Nothobranchius furzeri filter
  • synthetic construct (879) Apply synthetic construct filter
  • Gasterosteus aculeatus (818) Apply Gasterosteus aculeatus filter
  • Lonchura striata domestica (805) Apply Lonchura striata domestica filter
  • Hippocampus comes (768) Apply Hippocampus comes filter
  • Monodelphis domestica (694) Apply Monodelphis domestica filter
  • Rousettus aegyptiacus (639) Apply Rousettus aegyptiacus filter
  • Tupaia chinensis (617) Apply Tupaia chinensis filter
  • Anopheles gambiae (612) Apply Anopheles gambiae filter
  • Meriones unguiculatus (583) Apply Meriones unguiculatus filter

Gene

  • PPIB (2561) Apply PPIB filter
  • TBD (1462) Apply TBD filter
  • Bdnf (1374) Apply Bdnf filter
  • GAPDH (1320) Apply GAPDH filter
  • Htt (1318) Apply Htt filter
  • UBC (1313) Apply UBC filter
  • Slc17a6 (1162) Apply Slc17a6 filter
  • FOS (1149) Apply FOS filter
  • Gad1 (1096) Apply Gad1 filter
  • Il10 (1077) Apply Il10 filter
  • CD4 (1066) Apply CD4 filter
  • POLR2A (1063) Apply POLR2A filter
  • ESR1 (1025) Apply ESR1 filter
  • AR (989) Apply AR filter
  • Vegfa (885) Apply Vegfa filter
  • Tnf (884) Apply Tnf filter
  • Lgr5 (875) Apply Lgr5 filter
  • Oxtr (868) Apply Oxtr filter
  • Ifng (851) Apply Ifng filter
  • NTRK2 (846) Apply NTRK2 filter
  • Ace2 (835) Apply Ace2 filter
  • DRD2 (824) Apply DRD2 filter
  • TGFB1 (822) Apply TGFB1 filter
  • Slc17a7 (808) Apply Slc17a7 filter
  • Rbfox3 (806) Apply Rbfox3 filter
  • LEPR (804) Apply LEPR filter
  • Nrg1 (791) Apply Nrg1 filter
  • OPRM1 (786) Apply OPRM1 filter
  • GFAP (784) Apply GFAP filter
  • PDGFRA (774) Apply PDGFRA filter
  • IL6 (751) Apply IL6 filter
  • ACTB (745) Apply ACTB filter
  • Sox9 (745) Apply Sox9 filter
  • Chat (731) Apply Chat filter
  • DRD1 (730) Apply DRD1 filter
  • GLP1R (728) Apply GLP1R filter
  • NP (728) Apply NP filter
  • Cd8a (727) Apply Cd8a filter
  • PECAM1 (725) Apply PECAM1 filter
  • MAPT (723) Apply MAPT filter
  • COL1A1 (703) Apply COL1A1 filter
  • ACTA2 (701) Apply ACTA2 filter
  • CD3E (694) Apply CD3E filter
  • TRPA1 (688) Apply TRPA1 filter
  • CDKN1A (670) Apply CDKN1A filter
  • S (658) Apply S filter
  • Sst (650) Apply Sst filter
  • Piezo2 (643) Apply Piezo2 filter
  • 16SrRNA (638) Apply 16SrRNA filter
  • CD68 (615) Apply CD68 filter

Platform

  • Manual Assay RNAscope HiPlex (511449) Apply Manual Assay RNAscope HiPlex filter
  • Automated Assay for Leica Systems - RNAscope (128999) Apply Automated Assay for Leica Systems - RNAscope filter
  • Manual Assay RNAscope (70981) Apply Manual Assay RNAscope filter
  • Automated Assay for Ventana Systems - RNAscope (36105) Apply Automated Assay for Ventana Systems - RNAscope filter
  • Manual Assay BaseScope (5508) Apply Manual Assay BaseScope filter
  • Manual Assay miRNAscope (5124) Apply Manual Assay miRNAscope filter
  • Automated Assay for Leica Systems - miRNAscope (4930) Apply Automated Assay for Leica Systems - miRNAscope filter
  • Automated Assay for Leica Systems - BaseScope (4611) Apply Automated Assay for Leica Systems - BaseScope filter
  • Automated Assay for Ventana System - BaseScope (4574) Apply Automated Assay for Ventana System - BaseScope filter
  • Automated Assay for Ventana Systems - miRNAscope (4077) Apply Automated Assay for Ventana Systems - miRNAscope filter
  • Manual Assay DNAscope (227) Apply Manual Assay DNAscope filter
  • Manual Assay 2.5 (9) Apply Manual Assay 2.5 filter
  • T3 (3) Apply T3 filter
  • T4 (3) Apply T4 filter
  • T8 (3) Apply T8 filter
  • T1 (3) Apply T1 filter
  • T10 (3) Apply T10 filter
  • Manual Assay HiPlex (2) Apply Manual Assay HiPlex filter
  • T2 (2) Apply T2 filter
  • T7 (2) Apply T7 filter
  • T9 (2) Apply T9 filter
  • Automated Assay for Leica Systems (LS 2.5) (1) Apply Automated Assay for Leica Systems (LS 2.5) filter
  • T5 (1) Apply T5 filter
  • T6 (1) Apply T6 filter
  • T11 (1) Apply T11 filter
  • T12 (1) Apply T12 filter

Channel

  • 1 (158789) Apply 1 filter
  • 2 (145194) Apply 2 filter
  • 3 (93691) Apply 3 filter
  • 4 (93473) Apply 4 filter
  • 6 (46553) Apply 6 filter
  • 5 (36684) Apply 5 filter
  • 8 (82) Apply 8 filter
  • 9 (76) Apply 9 filter
  • 7 (72) Apply 7 filter
  • 11 (67) Apply 11 filter
  • 10 (58) Apply 10 filter
  • 12 (50) Apply 12 filter

HiPlex Channel

  • T1 (85058) Apply T1 filter
  • T10 (85051) Apply T10 filter
  • T12 (85050) Apply T12 filter
  • T11 (85039) Apply T11 filter
  • T9 (82563) Apply T9 filter
  • T8 (82560) Apply T8 filter
  • T4 (82558) Apply T4 filter
  • T2 (82557) Apply T2 filter
  • T7 (82553) Apply T7 filter
  • T3 (82546) Apply T3 filter
  • T6 (82546) Apply T6 filter
  • T5 (82540) Apply T5 filter
  • S1 (32) Apply S1 filter
  • 8 (17) Apply 8 filter
  • 1 (1) Apply 1 filter
  • 10 (1) Apply 10 filter
  • 6 (1) Apply 6 filter

Product

  • RNAscope Multiplex Fluorescent Assay (1035) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (998) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (732) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (704) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (497) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (293) Apply RNAscope 2.5 HD Brown Assay filter
  • TBD (193) Apply TBD filter
  • RNAscope 2.5 LS Assay (191) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (160) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (108) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (97) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (91) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (85) Apply RNAscope 2.5 VS Assay filter
  • Basescope (53) Apply Basescope filter
  • RNAscope HiPlex v2 assay (30) Apply RNAscope HiPlex v2 assay filter
  • miRNAscope (26) Apply miRNAscope filter
  • DNAscope HD Duplex Reagent Kit (15) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD duplex reagent kit (13) Apply RNAscope 2.5 HD duplex reagent kit filter
  • BaseScope Duplex Assay (12) Apply BaseScope Duplex Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (6) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Fluorescent Multiplex Reagent kit (5) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope ISH Probe High Risk HPV (5) Apply RNAscope ISH Probe High Risk HPV filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD Reagent Kit (4) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope HiPlex12 Reagents Kit (3) Apply RNAscope HiPlex12 Reagents Kit filter
  • DNAscope Duplex Assay (2) Apply DNAscope Duplex Assay filter
  • RNAscope 2.5 HD Assay (2) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay - RED (2) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope Multiplex Fluorescent Assay v2 (2) Apply RNAscope Multiplex Fluorescent Assay v2 filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • miRNAscope Assay Red (1) Apply miRNAscope Assay Red filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit V3 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit V3 filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Neuroscience (1849) Apply Neuroscience filter
  • Cancer (1385) Apply Cancer filter
  • Development (509) Apply Development filter
  • Inflammation (472) Apply Inflammation filter
  • Infectious Disease (410) Apply Infectious Disease filter
  • Other (406) Apply Other filter
  • Stem Cells (258) Apply Stem Cells filter
  • Covid (237) Apply Covid filter
  • Infectious (220) Apply Infectious filter
  • HPV (187) Apply HPV filter
  • lncRNA (135) Apply lncRNA filter
  • Metabolism (91) Apply Metabolism filter
  • Developmental (83) Apply Developmental filter
  • Stem cell (78) Apply Stem cell filter
  • Immunotherapy (72) Apply Immunotherapy filter
  • Other: Methods (67) Apply Other: Methods filter
  • HIV (64) Apply HIV filter
  • CGT (62) Apply CGT filter
  • Pain (62) Apply Pain filter
  • diabetes (57) Apply diabetes filter
  • LncRNAs (46) Apply LncRNAs filter
  • Aging (43) Apply Aging filter
  • Other: Heart (40) Apply Other: Heart filter
  • Reproduction (38) Apply Reproduction filter
  • Endocrinology (34) Apply Endocrinology filter
  • Other: Metabolism (32) Apply Other: Metabolism filter
  • Obesity (29) Apply Obesity filter
  • Other: Lung (29) Apply Other: Lung filter
  • Behavior (27) Apply Behavior filter
  • Kidney (27) Apply Kidney filter
  • Other: Kidney (27) Apply Other: Kidney filter
  • Alzheimer's Disease (26) Apply Alzheimer's Disease filter
  • Bone (24) Apply Bone filter
  • Stress (21) Apply Stress filter
  • Other: Zoological Disease (20) Apply Other: Zoological Disease filter
  • Regeneration (20) Apply Regeneration filter
  • Skin (20) Apply Skin filter
  • Heart (19) Apply Heart filter
  • Liver (19) Apply Liver filter
  • Lung (19) Apply Lung filter
  • Fibrosis (17) Apply Fibrosis filter
  • Other: Liver (17) Apply Other: Liver filter
  • Psychiatry (17) Apply Psychiatry filter
  • behavioral (16) Apply behavioral filter
  • Other: Endocrinology (16) Apply Other: Endocrinology filter
  • Other: Skin (16) Apply Other: Skin filter
  • Injury (15) Apply Injury filter
  • Anxiety (14) Apply Anxiety filter
  • Memory (14) Apply Memory filter
  • Reproductive Biology (14) Apply Reproductive Biology filter

Product sub type

  • Target Probes (256568) Apply Target Probes filter
  • Control Probe - Automated Leica (409) Apply Control Probe - Automated Leica filter
  • Control Probe - Automated Leica Multiplex (284) Apply Control Probe - Automated Leica Multiplex filter
  • Control Probe - Automated Leica Duplex (168) Apply Control Probe - Automated Leica Duplex filter
  • Control Probe- Manual RNAscope Multiplex (148) Apply Control Probe- Manual RNAscope Multiplex filter
  • Control Probe - Automated Ventana (143) Apply Control Probe - Automated Ventana filter
  • Control Probe - Manual RNAscope Singleplex (142) Apply Control Probe - Manual RNAscope Singleplex filter
  • Control Probe - Manual RNAscope Duplex (137) Apply Control Probe - Manual RNAscope Duplex filter
  • Control Probe (73) Apply Control Probe filter
  • Control Probe - Manual BaseScope Singleplex (51) Apply Control Probe - Manual BaseScope Singleplex filter
  • Control Probe - VS BaseScope Singleplex (41) Apply Control Probe - VS BaseScope Singleplex filter
  • Control Probe - LS BaseScope Singleplex (40) Apply Control Probe - LS BaseScope Singleplex filter
  • L-HBsAG (15) Apply L-HBsAG filter
  • Cancer (13) Apply Cancer filter
  • Automated Assay 2.5: Leica System (8) Apply Automated Assay 2.5: Leica System filter
  • Control Probe- Manual BaseScope Duplex (8) Apply Control Probe- Manual BaseScope Duplex filter
  • 1765 (8) Apply 1765 filter
  • 1379 (8) Apply 1379 filter
  • 2184 (8) Apply 2184 filter
  • 38322 (8) Apply 38322 filter
  • Manual Assay 2.5: Pretreatment Reagents (5) Apply Manual Assay 2.5: Pretreatment Reagents filter
  • Controls: Manual Probes (5) Apply Controls: Manual Probes filter
  • Control Probe- Manual RNAscope HiPlex (5) Apply Control Probe- Manual RNAscope HiPlex filter
  • Manual Assay RNAscope Brown (4) Apply Manual Assay RNAscope Brown filter
  • Manual Assay RNAscope Duplex (4) Apply Manual Assay RNAscope Duplex filter
  • Manual Assay RNAscope Multiplex (4) Apply Manual Assay RNAscope Multiplex filter
  • Manual Assay BaseScope Red (4) Apply Manual Assay BaseScope Red filter
  • IA: Other (4) Apply IA: Other filter
  • Control Probe - Manual BaseScope Duplex (4) Apply Control Probe - Manual BaseScope Duplex filter
  • Manual Assay miRNAscope Red (4) Apply Manual Assay miRNAscope Red filter
  • Automated Assay 2.5: Ventana System (3) Apply Automated Assay 2.5: Ventana System filter
  • IA: Other Accessories (3) Apply IA: Other Accessories filter
  • Control Probe - Automated Ventana Duplex (3) Apply Control Probe - Automated Ventana Duplex filter
  • Manual Assay BaseScope Duplex (3) Apply Manual Assay BaseScope Duplex filter
  • Manual Assay RNAscope Red (2) Apply Manual Assay RNAscope Red filter
  • Controls: Control Slides (2) Apply Controls: Control Slides filter
  • Control Probe- Manual BaseScope Singleplex (2) Apply Control Probe- Manual BaseScope Singleplex filter
  • Control Probe - Manual BaseScope™Singleplex (2) Apply Control Probe - Manual BaseScope™Singleplex filter
  • Manual Assay: Accessory Reagent (1) Apply Manual Assay: Accessory Reagent filter
  • Accessory Reagent (1) Apply Accessory Reagent filter
  • Controls: Manual RNAscope Multiplex (1) Apply Controls: Manual RNAscope Multiplex filter
  • IA: HybEZ (1) Apply IA: HybEZ filter
  • Automated Assay BaseScope: LS (1) Apply Automated Assay BaseScope: LS filter
  • Automated Assay BaseScope: VS (1) Apply Automated Assay BaseScope: VS filter
  • Software: RNAscope HiPlex Image Registration (1) Apply Software: RNAscope HiPlex Image Registration filter
  • miRNAscope Automated Assay: Leica System (1) Apply miRNAscope Automated Assay: Leica System filter
  • Automated Assay: VS (1) Apply Automated Assay: VS filter
  • Control Probe - VS BaseScope™Singleplex (1) Apply Control Probe - VS BaseScope™Singleplex filter
  • Controls:2.5VS Probes (1) Apply Controls:2.5VS Probes filter
  • Control Probe - Manual RNAscope Multiplex (1) Apply Control Probe - Manual RNAscope Multiplex filter

Sample Compatibility

  • Cell pellets (49) Apply Cell pellets filter
  • FFPE (41) Apply FFPE filter
  • Fixed frozen tissue (31) Apply Fixed frozen tissue filter
  • TMA (31) Apply TMA filter
  • Adherent cells (26) Apply Adherent cells filter
  • Freshfrozen tissue (18) Apply Freshfrozen tissue filter
  • Fresh frozen tissue (13) Apply Fresh frozen tissue filter
  • Cell Cultures (12) Apply Cell Cultures filter
  • TMA(Tissue Microarray) (9) Apply TMA(Tissue Microarray) filter
  • FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells (7) Apply FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells filter
  • CTC (4) Apply CTC filter
  • PBMC's (4) Apply PBMC's filter
  • Adherent or Cultured Cells (1) Apply Adherent or Cultured Cells filter
  • Fixed frozen (1) Apply Fixed frozen filter
  • FFPE,TMA (1) Apply FFPE,TMA filter
  • Fixed frozen tissues (for chromogenic assays) (1) Apply Fixed frozen tissues (for chromogenic assays) filter

Category

  • Publications (7110) Apply Publications filter

Application

  • Cancer (139875) Apply Cancer filter
  • Neuroscience (51010) Apply Neuroscience filter
  • Cancer, Neuroscience (32227) Apply Cancer, Neuroscience filter
  • Non-coding RNA (24365) Apply Non-coding RNA filter
  • Cancer, Inflammation (16436) Apply Cancer, Inflammation filter
  • Cancer, Inflammation, Neuroscience (12591) Apply Cancer, Inflammation, Neuroscience filter
  • Inflammation (9879) Apply Inflammation filter
  • Cancer, Stem Cell (7932) Apply Cancer, Stem Cell filter
  • Cancer, Neuroscience, Stem Cell (7028) Apply Cancer, Neuroscience, Stem Cell filter
  • Cancer, Immunotherapy, Inflammation, Neuroscience, Stem Cell (6854) Apply Cancer, Immunotherapy, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Inflammation, Neuroscience, Stem Cell (5424) Apply Cancer, Inflammation, Neuroscience, Stem Cell filter
  • Immunotherapy (5368) Apply Immunotherapy filter
  • Cancer, Immunotherapy (3866) Apply Cancer, Immunotherapy filter
  • Stem Cell (3385) Apply Stem Cell filter
  • Cancer, Immunotherapy, Neuroscience, Stem Cell (3050) Apply Cancer, Immunotherapy, Neuroscience, Stem Cell filter
  • Cancer, Immunotherapy, Inflammation (2844) Apply Cancer, Immunotherapy, Inflammation filter
  • Cancer, Immunotherapy, Inflammation, Neuroscience (1878) Apply Cancer, Immunotherapy, Inflammation, Neuroscience filter
  • Cancer, Immunotherapy, Neuroscience (1786) Apply Cancer, Immunotherapy, Neuroscience filter
  • Inflammation, Neuroscience (1499) Apply Inflammation, Neuroscience filter
  • Cancer, Non-coding RNA (1142) Apply Cancer, Non-coding RNA filter
  • Cancer, Immunotherapy, Inflammation, Stem Cell (1021) Apply Cancer, Immunotherapy, Inflammation, Stem Cell filter
  • Cancer,Neuroscience (940) Apply Cancer,Neuroscience filter
  • Cancer,Inflammation (777) Apply Cancer,Inflammation filter
  • Cancer, Inflammation, Stem Cell (594) Apply Cancer, Inflammation, Stem Cell filter
  • Immunotherapy, Inflammation (560) Apply Immunotherapy, Inflammation filter
  • Cancer,Inflammation,Neuroscience (424) Apply Cancer,Inflammation,Neuroscience filter
  • Cancer,Neuroscience,Stem Cell (317) Apply Cancer,Neuroscience,Stem Cell filter
  • Cancer, Immunotherapy, Stem Cell (295) Apply Cancer, Immunotherapy, Stem Cell filter
  • Cancer,Inflammation,Neuroscience,Stem Cell (259) Apply Cancer,Inflammation,Neuroscience,Stem Cell filter
  • Cancer,Stem Cell (237) Apply Cancer,Stem Cell filter
  • Cancer, Neuroscience, Neuroscience (221) Apply Cancer, Neuroscience, Neuroscience filter
  • Cancer,Immunotherapy,Inflammation,Neuroscience,Stem Cell (211) Apply Cancer,Immunotherapy,Inflammation,Neuroscience,Stem Cell filter
  • Cancer,Immunotherapy (206) Apply Cancer,Immunotherapy filter
  • Cancer,Immunotherapy,Inflammation (130) Apply Cancer,Immunotherapy,Inflammation filter
  • Neuroscience, Neuroscience (119) Apply Neuroscience, Neuroscience filter
  • Cancer,Immunotherapy,Neuroscience (113) Apply Cancer,Immunotherapy,Neuroscience filter
  • L glycoprotein (112) Apply L glycoprotein filter
  • Immunotherapy, Neuroscience (99) Apply Immunotherapy, Neuroscience filter
  • Cancer,Immunotherapy,Inflammation,Neuroscience (82) Apply Cancer,Immunotherapy,Inflammation,Neuroscience filter
  • Cancer,Immunotherapy,Neuroscience,Stem Cell (80) Apply Cancer,Immunotherapy,Neuroscience,Stem Cell filter
  • Immunotherapy,Inflammation (51) Apply Immunotherapy,Inflammation filter
  • Cancer,Non-coding RNA (48) Apply Cancer,Non-coding RNA filter
  • 4863 (41) Apply 4863 filter
  • Cancer, Neuroscience, Non-coding RNA (35) Apply Cancer, Neuroscience, Non-coding RNA filter
  • Inflammation,Neuroscience (33) Apply Inflammation,Neuroscience filter
  • HAdVC_gp16,HAdVCgp31 (32) Apply HAdVC_gp16,HAdVCgp31 filter
  • Cancer, Inflammation, Neuroscience, Non-coding RNA (31) Apply Cancer, Inflammation, Neuroscience, Non-coding RNA filter
  • Cancer,Immunotherapy,Inflammation,Stem Cell (30) Apply Cancer,Immunotherapy,Inflammation,Stem Cell filter
  • Inflammation, Non-coding RNA (30) Apply Inflammation, Non-coding RNA filter
  • Neuroscience, Non-coding RNA (29) Apply Neuroscience, Non-coding RNA filter
Levels of Cocaine and Amphetamine-Regulated Transcript in Vagal afferents in the mouse are unaltered in response to metabolic challenges

eNeuro

2016 Sep 16

Yuan X, Huang Y, Shah S, Wu H, Gautron L.
PMID: - | DOI: 10.1523/ENEURO.0174-16.2016

Cocaine and Amphetamine-regulated Transcript (CART) is one of the most abundant neuropeptides in vagal afferents, including those involved in regulating feeding. Recent observations indicate that metabolic challenges dramatically alter the neuropeptidergic profile of CART-producing vagal afferents. Here, using confocal microscopy, we re-assessed the distribution and regulation of CART (55-102) immunoreactivity in vagal afferents of the male mouse in response to metabolic challenges, including fasting, high-fat diet feeding. Importantly, the perikarya and axons of vagal C-fibers were labeled using mice expressing channelrodhopsin-2 (ChR2-YFP) in Nav1.8-Cre-expressing neurons. In these mice, approximately 82% of the nodose ganglion neurons were labeled with ChR2-YFP. Furthermore, ChR2-YFP-labeled axons could easily be identified in the dorsovagal complex. CART (55-102) immunoreactivity was observed in 55% of the ChR2-YFP-labeled neurons in the nodose ganglion and 22% of the ChR2-YFP-labeled varicosities within the area postrema of fed, fasted and obese mice. The distribution of positive profiles was also identical across the full range of CART staining in fed, fasted and obese mice. In contrast to previous studies, fasting did not induce melanin-concentrating hormone immunoreactivity in vagal afferents. Moreover, prepro-MCH mRNA was undetectable in the nodose ganglion of fasted mice. In summary, this study showed that the perikarya and central terminals of vagal afferents are invariably enriched in CART and devoid of MCH.

Significance Statement Recent studies reported that fasting triggers vagal afferents to switch from expressing anorectic to orexigenic neuropeptides. This study failed to replicate the aforementioned observations using a combination of confocal microscopy, immunohistochemistry, and in situ hybridization. In particular, we showed that neither fasting nor diet-induced obesity influence the immunoreactivity for Cocaine and Amphetamine-regulated Transcript neuropeptide in the mouse vagal afferents. In contrast to previous studies, we also failed to detect melanin-concentrating hormone expression in the mouse vagal afferents. Overall, we reached the conclusion that the neuropeptidergic profile of the vagal afferents involved in feeding is remarkably stable in response to metabolic challenges.

Clinicopathologic features of non-keratinizing carcinoma of nasal cavity and paranasal sinus

Zhonghua Bing Li Xue Za Zhi.

2016 Sep 08

Zhao YH, Liu HG.
PMID: 27646894 | DOI: 10.3760/cma.j.issn.0529-5807.2016.09.010.

OBJECTIVE:

To study the clinicopathologic features, immunophenotype, differential diagnosis and prognosis of non-keratinizing carcinoma of nasal cavity and paranasal sinus.

METHODS:

Four hundred and forty-one cases of squamous cell carcinoma of the nasal cavity and sinuses diagnosed in Beijing Tongren Hospital from January 2008 to August 2015 were included. Twenty-six cases of non-keratinizing carcinomas were selected. The histopathologic features and the clinicopathologic data of these twenty-six cases were retrospectively analyzed. Immunohistochemistry (two-step EnVision method) was done to evaluate the expression of CK, vimentin, CK5/6, CK7, CK8/18, p16, p53, Ki-67 etc. In situ hybridization was used to detect Epstein-Barr virus mRNA(EBER), and flow-through hybridization was used to evaluate the presence of human papilloma virus (HPV). One of the cases which HPV is positive was detected by HPV in situ hybridization and RNAscope technology.

RESULTS:

The mean age for the twenty-six patients (16 males, 10 females) was 51.2 years (range 22 to 79 years). Three patients had a history of inverted papilloma.Microscopically the tumors showed invasive papillary and inverted growth, and formed solid cell nests with different sizes. It was similar to papillary carcinoma of the urinary tract: the nuclei of the tumor were rounded and the nucleolus are clear. Three cases displayed transition between normal epithelium to neoplastic cells; in two cases (2/26), some tumor cells were spindle shaped. Twenty cases (20/20) were strongly positive for CK, p63; 17 cases (17/20) were strongly positive for CK5/6 and three cases (3/20) were focally positive. Sixteen cases were strongly positive for CK8/18 and three cases (3/20) were focally positive and one case was negative. Seven cases (7/20) were strongly positive for CK7 and 13 cases (13/20) were negative. Two cases (2/20) were focally positive for vimentin and eighteen (18/20) cases were negative. One case (1/20) was strongly positive for p16 and nineteen cases (19/20) were negative. Nineteen cases (19/20) were positive for p53 and one case (1/20) was negative. Ki-67 index was >50% in 11 cases. Twenty cases (20/20) were negative for AFP, NUT, S-100 protein, HMB45 and Melan A. One case was positive for HPV (6, 11, 16, 18), as detected by in situ hybridization. The HPV18 mRNA was detected by RNAscope technique. In situ hybridization were negative in all twenty cases. The mean follow-up time of the patients in this group was less than 5 years, and the prognosis needs further observation.

CONCLUSIONS:

Non-keratinizing squamous cell carcinoma is a rare neoplasm with distinct morphological characteristics. Its diagnosis is primarily based on the site of lesions and the histological features.Immunohistochemistry staining can aid the diagnosis and differential diagnoses. The tumor may originate from the epithelium of nasal cavity and sinus. This disease has no relation with HPV and EBV infection, and the treatment is primarily surgical excision combined with postoperative radiotherapy.

Central Control Circuit for Context-Dependent Micturition

Cell.

2016 Sep 22

Hou XH, Hyun M, Taranda J, Huang KW, Todd E, Feng D, Atwater E, Croney D, Zeidel ML, Osten P, Sabatini BL.
PMID: 27662084 | DOI: 10.1016/j.cell.2016.08.073

Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.

Presence of high risk HPV DNA but indolent transcription of E6/E7 oncogenes in invasive ductal carcinoma of breast

Pathology - Research and Practice

2016 Sep 22

Wanga D, Fu L, Shah W, Zhang J, Yan Y, Ge X, He J, Wang Y, Xu Li.
PMID: - | DOI: dx.doi.org/10.1016/j.prp.2016.09.009

Background and aims

The causative role of high risk human papillomavirus (HR-HPV) in breast cancer development is controversial, though a number of reports have identified HR-HPV DNA in breast cancer specimens. Nevertheless, most studies to date have focused primarily on viral DNA rather than the viral transcription. The aim of this study was to investigate the presence of HR-HPV in breast cancer tissues at HPV DNA level and HPV oncogenes mRNA level by in situ hybridization (ISH).

Methods

One hundred and forty six (146) cases of breast invasive ductal carcinoma(IDC) and 83 cases of benign breast lesions were included in the study. Type specific oligonucleotide probes were used for the DNA detection of HPV 16,18 and 58 by ISH. HR-HPV oncogenes mRNA was assayed by novel RNAscope HR-HPV HR7 assay ISH. p16 protein expression was evaluated by immunohistochemistry (IHC).

Results

HR-HPV 16,18 and 58 DNA were detected in 52 out of 146 (35.6%) IDC and in 3 out of 83 (3.6%) benign breast lesions by ISH. The HR-HPV mRNAs was detected only in a few specimens with strong HPV DNA positivity(4/25) in a few scattered cancer cells with very weak punctate nuclear and/or cytoplasmic staining. p16 over-expression did not correlate with the HPV DNA positive breast cancer samples(17/52 HPVDNA+ vs 28/94 HPV DNA-, p = 0.731).

Conclusions

HR-HPVs certainly exist in breast cancer tissue with less active transcription, which implies that the causal role of HPV in breast cancer development need further study.

Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation

Cell.

2016 Sep 22

Zhong FL, Mamaï O, Sborgi L, Boussofara L, Hopkins R, Robinson K, Szeverényi I, Takeichi T, Balaji R, Lau A, Tye H, Roy K, Bonnard C, Ahl PJ, Jones LA, Baker P, Lacina L, Otsuka A, Fournie PR, Malecaze F, Lane EB, Akiyama M, Kabashima K, Connolly JE, Mast
PMID: 27662089 | DOI: 10.1016/j.cell.2016.09.001

Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.

RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes

Cell Metab.

2016 Sep 09

Xin Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C, Murphy AJ, Yancopoulos GD, Lin C, Gromada J.
PMID: 27667665 | DOI: 10.1016/j.cmet.2016.08.018

Pancreatic islet cells are critical for maintaining normal blood glucose levels, and their malfunction underlies diabetes development and progression. We used single-cell RNA sequencing to determine the transcriptomes of 1,492 human pancreatic α, β, δ, and PP cells from non-diabetic and type 2 diabetes organ donors. We identified cell-type-specific genes and pathways as well as 245 genes with disturbed expression in type 2 diabetes. Importantly, 92% of the genes have not previously been associated with islet cell function or growth. Comparison of gene profiles in mouse and human α and β cells revealed species-specific expression. All data are available for online browsing and download and will hopefully serve as a resource for the islet research community.

PD-L1 expression by two complementary diagnostic assays and mRNA in situ hybridization in small cell lung cancer

J Thorac Oncol.

2016 Sep 14

Yu H, Batenchuk C, Badzio A, Boyle TA, Czapiewski P, Chan DC, Lu X, Gao D, Ellison K, Kowalewski AA, Rivard CJ, Dziadziuszko R, Zhou C, Hussein M, Richards D, Wilks S, Monte M, Edenfield W, Goldschmidt J, Page R, Ulrich B, Waterhouse D, Close S, Jassem J,
PMID: 27639678 | DOI: 10.1016/j.jtho.2016.09.002

This article does not have an abstract to display.

Satellite RNAs promote pancreatic oncogenic processes via the dysfunction of YBX1

Nat Commun.

2016 Sep 26

Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Ijichi H, Koike K.
PMID: 27667193 | DOI: 10.1038/ncomms13006

Highly repetitive tandem arrays at the centromeric and pericentromeric regions in chromosomes, previously considered silent, are actively transcribed, particularly in cancer. This aberrant expression occurs even in K-ras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To examine the biological roles of the satellite RNAs in carcinogenesis, we construct mouse PanIN-derived cells expressing major satellite (MajSAT) RNA and show increased malignant properties. We find an increase in frequency of chromosomal instability and point mutations in both genomic and mitochondrial DNA. We identify Y-box binding protein 1 (YBX1) as a protein that binds to MajSAT RNA. MajSAT RNA inhibits the nuclear translocation of YBX1 under stress conditions, thus reducing its DNA-damage repair function. The forced expression of YBX1 significantly decreases the aberrant phenotypes. These findings indicate that during the early stage of cancer development, satellite transcripts may act as 'intrinsic mutagens' by inducing YBX1 dysfunction, which may be crucial in oncogenic processes.

Placental Pathology of Zika Virus: Viral Infection of the Placenta Induces Villous Stromal Macrophage (Hofbauer Cell) Proliferation and Hyperplasia.

Arch Pathol Lab Med.

2016 Sep 28

Rosenberg AZ, Yu W, Hill DA, Reyes CA, Schwartz DA.
PMID: 27681334 | DOI: 10.5858/arpa.2016-0401-OA

Context .- The placenta is an important component in understanding the fetal response to intrauterine Zika virus infection, but the pathologic changes in this organ remain largely unknown. Hofbauer cells are fetal-derived macrophages normally present in the chorionic villous stroma. They have been implicated in a variety of physiological and pathologic processes, in particular involving infectious agents. Objectives .- To characterize the fetal and maternal responses and viral localization in the placenta following Zika virus transmission to an 11 weeks' gestation fetus. The clinical course was notable for prolonged viremia in the mother and extensive neuronal necrosis in the fetus. The fetus was delivered at 21 weeks' gestation after pregnancy termination. Design .- The placenta was evaluated by using immunohistochemistry for inflammatory cells (macrophages/monocytes [Hofbauer cells], B and T lymphocytes) and proliferating cells, and an RNA probe to Zika virus. The fetal brain and the placenta were previously found to be positive by reverse transcription-polymerase chain reaction for Zika virus RNA. Results .- The placenta demonstrated prominently enlarged, hydropic chorionic villi with hyperplasia and focal proliferation of Hofbauer cells. The degree of Hofbauer cell hyperplasia gave an exaggerated immature appearance to the villi. No acute or chronic villitis, villous necrosis, remote necroinflammatory abnormalities, chorioamnionitis, funisitis, or hemorrhages were present. An RNA probe to Zika virus was positive in villous stromal cells, presumably Hofbauer cells. Conclusions .- Zika virus placental infection induces proliferation and prominent hyperplasia of Hofbauer cells in the chorionic villi but does not elicit villous necrosis or a maternal or fetal lymphoplasmacellular or acute inflammatory cell reaction.

Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome.

Sci Rep.

2016 Sep 30

Dubail J, Vasudevan D, Wang LW, Earp SE, Jenkins MW, Haltiwanger RS, Apte SS.
PMID: 27687499 | DOI: 10.1038/srep33974

Peters Plus syndrome (PPS), a congenital disorder of glycosylation, results from recessive mutations affecting the glucosyltransferase B3GLCT, leading to congenital corneal opacity and diverse extra-ocular manifestations. Together with the fucosyltransferase POFUT2, B3GLCT adds Glucoseβ1-3Fucose disaccharide to a consensus sequence in thrombospondin type 1 repeats (TSRs) of several proteins. Which of these target proteins is functionally compromised in PPS is unknown. We report here that haploinsufficiency of murine Adamts9, encoding a secreted metalloproteinase with 15 TSRs, leads to congenital corneal opacity and Peters anomaly (persistent lens-cornea adhesion), which is a hallmark of PPS. Mass spectrometry of recombinant ADAMTS9 showed that 9 of 12 TSRs with the O-fucosylation consensus sequence carried the Glucoseβ1-3Fucose disaccharide and B3GLCT knockdown reduced ADAMTS9 secretion in HEK293F cells. Together, the genetic and biochemical findings imply a dosage-dependent role for ADAMTS9 in ocular morphogenesis. Reduced secretion of ADAMTS9 in the absence of B3GLCT is proposed as a mechanism of Peters anomaly in PPS. The functional link between ADAMTS9 and B3GLCT established here also provides credence to their recently reported association with age-related macular degeneration.

Recurrent loss of STING Signaling in Melanoma Correlates with Susceptibility to Viral Oncolysis.

Cancer Res.

2016 Sep 28

Xia T, Konno H, Barber GN.
PMID: 27680683 | DOI: 10.1158/0008-5472.CAN-16-1404

The innate immune regulator STING stimulates cytokine production in response to the presence of cytosolic DNA, which can arise following DNA damage. Extrinsic STING signaling is also needed for antigen-presenting cells (APC) to stimulate antitumor T cell immunity. Here we show that STING signaling is recurrently suppressed in melanoma cells, where this event may enable immune escape after DNA damage. Mechanistically STING signaling was suppressed most frequently by epigenetic silencing of either STING or the cyclic GMP-AMP synthase (cGAS), which generates STING-activating cyclic dinucleotides (CDNs) after binding cytosolic DNA species. Loss of STING function rendered melanoma cells unable to produce type I interferon and other immune cytokines after exposure to cytosolic DNA species. Consequently, such cells were highly susceptible to infection with DNA viruses including HSV1, a variant of which is being developed presently as a therapeutic oncolytic virus (talimogene laherparepvec [T-VEC]). Our findings provide insight into the basis for susceptibility to viral oncolysis by agents such as HSV1.

Prognostic impact of MYC protein expression in central nervous system diffuse large B-cell lymphoma: comparison with MYC rearrangement and MYC mRNA expression.

Mod Pathol.

2016 Sep 30

Son SM, Ha SY, Yoo HY, Oh D, Kim SJ, Kim WS, Ko YH.
PMID: 27687005 | DOI: 10.1038/modpathol.2016.56

The prognostic role of MYC has been well documented in non-central nervous system diffuse large B-cell lymphoma; however, it remains controversial in central nervous system diffuse large B-cell lymphoma. To investigate the prognostic value of MYC, we analyzed the MYC protein expression by immunohistochemistry, mRNA expression by RNA in situ hybridization, and gene status by fluorescence in situ hybridization in 74 cases of central nervous system diffuse large B-cell lymphoma. Moreover, we examined the correlation between MYC translocation, mRNA expression, and protein expression. The mean percentage of MYC immunopositive cells was 49%. Using a 44% cutoff value, 49 (66%) cases showed MYC protein overexpression. The result of mRNA in situ hybridization using the RNA scope technology was obtained using the H-scoring system; the median value was 34.2. Using the cutoff value of 63.5, 16 (22%) cases showed MYC mRNA overexpression. MYC gene rearrangement was detected in five out of 68 (7%) cases. MYC translocation showed no statistically significant correlation with mRNA expression; however, all MYC translocation-positive cases showed MYC protein overexpression, with a higher mean percentage of MYC protein expression than that of translocation-negative cases (78 vs 48%, P=0.001). The level of MYC mRNA expression was moderately correlated with the level of MYC protein expression (P<0.001). The mean percentage of MYC protein expression in the high MYC mRNA group was higher than that in the low MYC mRNA group (70 vs 47%, P<0.001). A univariate analysis showed that age over 60 years, Eastern Cooperative Oncology Group (ECOG) performance status ≥2 and MYC protein overexpression were significantly associated with an increased risk of death. MYC translocation and MYC mRNA expression had no prognostic significance. On multivariate analysis, MYC protein overexpression and ECOG score retained prognostic significance.

Pages

  • « first
  • ‹ previous
  • …
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?