Science translational medicine
Sayed, FA;Kodama, L;Fan, L;Carling, GK;Udeochu, JC;Le, D;Li, Q;Zhou, L;Wong, MY;Horowitz, R;Ye, P;Mathys, H;Wang, M;Niu, X;Mazutis, L;Jiang, X;Wang, X;Gao, F;Brendel, M;Telpoukhovskaia, M;Tracy, TE;Frost, G;Zhou, Y;Li, Y;Qiu, Y;Cheng, Z;Yu, G;Hardy, J;Coppola, G;Wang, F;DeTure, MA;Zhang, B;Xie, L;Trajnowski, JQ;Lee, VMY;Gong, S;Sinha, SC;Dickson, DW;Luo, W;Gan, L;
PMID: 34851693 | DOI: 10.1126/scitranslmed.abe3947
[Figure: see text].
Cui, L;Guo, J;Cranfill, SL;Gautam, M;Bhattarai, J;Olson, W;Beattie, K;Challis, RC;Wu, Q;Song, X;Raabe, T;Gradinaru, V;Ma, M;Liu, Q;Luo, W;
PMID: 34986325 | DOI: 10.1016/j.neuron.2021.12.007
Whether glutamate or itch-selective neurotransmitters are used to confer itch specificity is still under debate. We focused on an itch-selective population of primary afferents expressing MRGPRA3, which highly expresses Vglut2 and the neuropeptide neuromedin B (Nmb), to investigate this question. Optogenetic stimulation of MRGPRA3+ afferents triggers scratching and other itch-related avoidance behaviors. Using a combination of optogenetics, spinal cord slice recordings, Vglut2 conditional knockout mice, and behavior assays, we showed that glutamate is essential for MRGPRA3+ afferents to transmit itch. We further demonstrated that MRGPRA3+ afferents form monosynaptic connections with both NMBR+ and NMBR- neurons and that NMB and glutamate together can enhance the activity of NMBR+ spinal DH neurons. Moreover, Nmb in MRGPRA3+ afferents and NMBR+ DH neurons are required for chloroquine-induced scratching. Together, our results establish a new model in which glutamate is an essential neurotransmitter in primary afferents for itch transmission, whereas NMB signaling enhances its activities.
van der Vlist, M;Raoof, R;Willemen, HLDM;Prado, J;Versteeg, S;Martin Gil, C;Vos, M;Lokhorst, RE;Pasterkamp, RJ;Kojima, T;Karasuyama, H;Khoury-Hanold, W;Meyaard, L;Eijkelkamp, N;
PMID: 34921782 | DOI: 10.1016/j.neuron.2021.11.020
The current paradigm is that inflammatory pain passively resolves following the cessation of inflammation. Yet, in a substantial proportion of patients with inflammatory diseases, resolution of inflammation is not sufficient to resolve pain, resulting in chronic pain. Mechanistic insight into how inflammatory pain is resolved is lacking. Here, we show that macrophages actively control resolution of inflammatory pain remotely from the site of inflammation by transferring mitochondria to sensory neurons. During resolution of inflammatory pain in mice, M2-like macrophages infiltrate the dorsal root ganglia that contain the somata of sensory neurons, concurrent with the recovery of oxidative phosphorylation in sensory neurons. The resolution of pain and the transfer of mitochondria requires expression of CD200 receptor (CD200R) on macrophages and the non-canonical CD200R-ligand iSec1 on sensory neurons. Our data reveal a novel mechanism for active resolution of inflammatory pain.
Liu, S;Ye, M;Pao, GM;Song, SM;Jhang, J;Jiang, H;Kim, JH;Kang, SJ;Kim, DI;Han, S;
PMID: 34921781 | DOI: 10.1016/j.neuron.2021.11.029
Breathing can be heavily influenced by pain or internal emotional states, but the neural circuitry underlying this tight coordination is unknown. Here we report that Oprm1 (μ-opioid receptor)-expressing neurons in the lateral parabrachial nucleus (PBL) are crucial for coordinating breathing with affective pain in mice. Individual PBLOprm1 neuronal activity synchronizes with breathing rhythm and responds to noxious stimuli. Manipulating PBLOprm1 activity directly changes breathing rate, affective pain perception, and anxiety. Furthermore, PBLOprm1 neurons constitute two distinct subpopulations in a "core-shell" configuration that divergently projects to the forebrain and hindbrain. Through non-overlapping projections to the central amygdala and pre-Bötzinger complex, these two subpopulations differentially regulate breathing, affective pain, and negative emotions. Moreover, these subsets form recurrent excitatory networks through reciprocal glutamatergic projections. Together, our data define the divergent parabrachial opioidergic circuits as a common neural substrate that coordinates breathing with various sensations and behaviors such as pain and emotional processing.
Seeker, LA;Williams, A;
PMID: 34860266 | DOI: 10.1007/s00401-021-02390-4
It is the centenary of the discovery of oligodendrocytes and we are increasingly aware of their importance in the functioning of the brain in development, adult learning, normal ageing and in disease across the life course, even in those diseases classically thought of as neuronal. This has sparked more interest in oligodendroglia for potential therapeutics for many neurodegenerative/neurodevelopmental diseases due to their more tractable nature as a renewable cell in the central nervous system. However, oligodendroglia are not all the same. Even from the first description, differences in morphology were described between the cells. With advancing techniques to describe these differences in human tissue, the complexity of oligodendroglia is being discovered, indicating apparent functional differences which may be of critical importance in determining vulnerability and response to disease, and targeting of potential therapeutics. It is timely to review the progress we have made in discovering and understanding oligodendroglial heterogeneity in health and neuropathology.
Somasekharan, SP;Saxena, N;Zhang, F;Beraldi, E;Huang, JN;Gentle, C;Fazli, L;Thi, M;Sorensen, PH;Gleave, M;
PMID: 34939643 | DOI: 10.1093/nar/gkab1247
We report a new mechanism of androgen receptor (AR) mRNA regulation and cytoprotection in response to AR pathway inhibition (ARPI) stress in prostate cancer (PCA). AR mRNA translation is coordinately regulated by RNA binding proteins, YTHDF3 and G3BP1. Under ambient conditions m6A-modified AR mRNA is bound by YTHDF3 and translationally stimulated, while m6A-unmodified AR mRNA is bound by G3BP1 and translationally repressed. When AR-regulated PCA cell lines are subjected to ARPI stress, m6A-modified AR mRNA is recruited from actively translating polysomes (PSs) to RNA-protein stress granules (SGs), leading to reduced AR mRNA translation. After ARPI stress, m6A-modified AR mRNA liquid-liquid phase separated with YTHDF3, while m6A-unmodified AR mRNA phase separated with G3BP1. Accordingly, these AR mRNA messages form two distinct YTHDF3-enriched or G3BP1-enriched clusters in SGs. ARPI-induced SG formation is cell-protective, which when blocked by YTHDF3 or G3BP1 silencing increases PCA cell death in response to ARPI stress. Interestingly, AR mRNA silencing also delays ARPI stress-induced SG formation, highlighting its supportive role in triggering this stress response. Our results define a new mechanism for stress adaptive cell survival after ARPI stress involving SG-regulated translation of AR mRNA, mediated by m6A RNA modification and their respective regulatory proteins.
Cell death and differentiation
Wang, T;Tomas, D;Perera, ND;Cuic, B;Luikinga, S;Viden, A;Barton, SK;McLean, CA;Samson, AL;Southon, A;Bush, AI;Murphy, JM;Turner, BJ;
PMID: 34857917 | DOI: 10.1038/s41418-021-00910-z
Amyotrophic lateral sclerosis (ALS) is caused by selective degeneration of motor neurons in the brain and spinal cord; however, the primary cell death pathway(s) mediating motor neuron demise remain elusive. We recently established that necroptosis, an inflammatory form of regulated cell death, was dispensable for motor neuron death in a mouse model of ALS, implicating other forms of cell death. Here, we confirm these findings in ALS patients, showing a lack of expression of key necroptotic effector proteins in spinal cords. Rather, we uncover evidence for ferroptosis, a recently discovered iron-dependent form of regulated cell death, in ALS. Depletion of glutathione peroxidase 4 (GPX4), an anti-oxidant enzyme and central repressor of ferroptosis, occurred in post-mortem spinal cords of both sporadic and familial ALS patients. GPX4 depletion was also an early and universal feature of spinal cords and brains of transgenic mutant superoxide dismutase 1 (SOD1G93A), TDP-43 and C9orf72 mouse models of ALS. GPX4 depletion and ferroptosis were linked to impaired NRF2 signalling and dysregulation of glutathione synthesis and iron-binding proteins. Novel BAC transgenic mice overexpressing human GPX4 exhibited high GPX4 expression localised to spinal motor neurons. Human GPX4 overexpression in SOD1G93A mice significantly delayed disease onset, improved locomotor function and prolonged lifespan, which was attributed to attenuated lipid peroxidation and motor neuron preservation. Our study discovers a new role for ferroptosis in mediating motor neuron death in ALS, supporting the use of anti-ferroptotic therapeutic strategies, such as GPX4 pathway induction and upregulation, for ALS treatment.
Ramosaj, M;Madsen, S;Maillard, V;Scandella, V;Sudria-Lopez, D;Yuizumi, N;Telley, L;Knobloch, M;
PMID: 34934077 | DOI: 10.1038/s41467-021-27365-7
Neural stem/progenitor cells (NSPCs) generate new neurons throughout adulthood. However, the underlying regulatory processes are still not fully understood. Lipid metabolism plays an important role in regulating NSPC activity: build-up of lipids is crucial for NSPC proliferation, whereas break-down of lipids has been shown to regulate NSPC quiescence. Despite their central role for cellular lipid metabolism, the role of lipid droplets (LDs), the lipid storing organelles, in NSPCs remains underexplored. Here we show that LDs are highly abundant in adult mouse NSPCs, and that LD accumulation is significantly altered upon fate changes such as quiescence and differentiation. NSPC proliferation is influenced by the number of LDs, inhibition of LD build-up, breakdown or usage, and the asymmetric inheritance of LDs during mitosis. Furthermore, high LD-containing NSPCs have increased metabolic activity and capacity, but do not suffer from increased oxidative damage. Together, these data indicate an instructive role for LDs in driving NSPC behaviour.
Lee, BY;Hogg, EKJ;Below, CR;Kononov, A;Blanco-Gomez, A;Heider, F;Xu, J;Hutton, C;Zhang, X;Scheidt, T;Beattie, K;Lamarca, A;McNamara, M;Valle, JW;Jørgensen, C;
PMID: 34921158 | DOI: 10.1038/s41467-021-27607-8
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with a complex microenvironment. Dichotomous tumour-promoting and -restrictive roles have been ascribed to the tumour microenvironment, however the effects of individual stromal subsets remain incompletely characterised. Here, we describe how heterocellular Oncostatin M (OSM) - Oncostatin M Receptor (OSMR) signalling reprograms fibroblasts, regulates tumour growth and metastasis. Macrophage-secreted OSM stimulates inflammatory gene expression in cancer-associated fibroblasts (CAFs), which in turn induce a pro-tumourigenic environment and engage tumour cell survival and migratory signalling pathways. Tumour cells implanted in Osm-deficient (Osm-/-) mice display an epithelial-dominated morphology, reduced tumour growth and do not metastasise. Moreover, the tumour microenvironment of Osm-/- animals exhibit increased abundance of α smooth muscle actin positive myofibroblasts and a shift in myeloid and T cell phenotypes, consistent with a more immunogenic environment. Taken together, these data demonstrate how OSM-OSMR signalling coordinates heterocellular interactions to drive a pro-tumourigenic environment in PDA.
Kürten, CHL;Kulkarni, A;Cillo, AR;Santos, PM;Roble, AK;Onkar, S;Reeder, C;Lang, S;Chen, X;Duvvuri, U;Kim, S;Liu, A;Tabib, T;Lafyatis, R;Feng, J;Gao, SJ;Bruno, TC;Vignali, DAA;Lu, X;Bao, R;Vujanovic, L;Ferris, RL;
PMID: 34921143 | DOI: 10.1038/s41467-021-27619-4
Head and neck squamous cell carcinoma (HNSCC) is characterized by complex relations between stromal, epithelial, and immune cells within the tumor microenvironment (TME). To enable the development of more efficacious therapies, we aim to study the heterogeneity, signatures of unique cell populations, and cell-cell interactions of non-immune and immune cell populations in 6 human papillomavirus (HPV)+ and 12 HPV- HNSCC patient tumor and matched peripheral blood specimens using single-cell RNA sequencing. Using this dataset of 134,606 cells, we show cell type-specific signatures associated with inflammation and HPV status, describe the negative prognostic value of fibroblasts with elastic differentiation specifically in the HPV+ TME, predict therapeutically targetable checkpoint receptor-ligand interactions, and show that tumor-associated macrophages are dominant contributors of PD-L1 and other immune checkpoint ligands in the TME. We present a comprehensive single-cell view of cell-intrinsic mechanisms and cell-cell communication shaping the HNSCC microenvironment.
Le Thomas, A;Ferri, E;Marsters, S;Harnoss, JM;Lawrence, DA;Zuazo-Gaztelu, I;Modrusan, Z;Chan, S;Solon, M;Chalouni, C;Li, W;Koeppen, H;Rudolph, J;Wang, W;Wu, TD;Walter, P;Ashkenazi, A;
PMID: 34911951 | DOI: 10.1038/s41467-021-27597-7
Inositol requiring enzyme 1 (IRE1) mitigates endoplasmic-reticulum (ER) stress by orchestrating the unfolded-protein response (UPR). IRE1 spans the ER membrane, and signals through a cytosolic kinase-endoribonuclease module. The endoribonuclease generates the transcription factor XBP1s by intron excision between similar RNA stem-loop endomotifs, and depletes select cellular mRNAs through regulated IRE1-dependent decay (RIDD). Paradoxically, in mammals RIDD seems to target only mRNAs with XBP1-like endomotifs, while in flies RIDD exhibits little sequence restriction. By comparing nascent and total IRE1α-controlled mRNAs in human cells, we identify not only canonical endomotif-containing RIDD substrates, but also targets without such motifs-degraded by a process we coin RIDDLE, for RIDD lacking endomotif. IRE1α displays two basic endoribonuclease modalities: highly specific, endomotif-directed cleavage, minimally requiring dimers; and more promiscuous, endomotif-independent processing, requiring phospho-oligomers. An oligomer-deficient IRE1α mutant fails to support RIDDLE in vitro and in cells. Our results advance current mechanistic understanding of the UPR.
Saad, NY;Al-Kharsan, M;Garwick-Coppens, SE;Chermahini, GA;Harper, MA;Palo, A;Boudreau, RL;Harper, SQ;
PMID: 34880230 | DOI: 10.1038/s41467-021-27430-1
Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating myopathy caused by de-repression of the DUX4 gene in skeletal muscles. Effective therapies will likely involve DUX4 inhibition. RNA interference (RNAi) is one powerful approach to inhibit DUX4, and we previously described a RNAi gene therapy to achieve DUX4 silencing in FSHD cells and mice using engineered microRNAs. Here we report a strategy to direct RNAi against DUX4 using the natural microRNA miR-675, which is derived from the lncRNA H19. Human miR-675 inhibits DUX4 expression and associated outcomes in FSHD cell models. In addition, miR-675 delivery using gene therapy protects muscles from DUX4-associated death in mice. Finally, we show that three known miR-675-upregulating small molecules inhibit DUX4 and DUX4-activated FSHD biomarkers in FSHD patient-derived myotubes. To our knowledge, this is the first study demonstrating the use of small molecules to suppress a dominant disease gene using an RNAi mechanism.