Polkoff, KM;Gupta, NK;Green, AJ;Murphy, Y;Chung, J;Gleason, KL;Simpson, SG;Walker, DM;Collins, B;Piedrahita, JA;
PMID: 35650234 | DOI: 10.1038/s41598-022-13056-w
Hair follicle stem cells are key for driving growth and homeostasis of the hair follicle niche, have remarkable regenerative capacity throughout hair cycling, and display fate plasticity during cutaneous wound healing. Due to the need for a transgenic reporter, essentially all observations related to LGR5-expressing hair follicle stem cells have been generated using transgenic mice, which have significant differences in anatomy and physiology from the human. Using a transgenic pig model, a widely accepted model for human skin and human skin repair, we demonstrate that LGR5 is a marker of hair follicle stem cells across species in homeostasis and development. We also report the strong similarities and important differences in expression patterns, gene expression profiles, and developmental processes between species. This information is important for understanding the fundamental differences and similarities across species, and ultimately improving human hair follicle regeneration, cutaneous wound healing, and skin cancer treatment.
Lee, EJ;Saraiva, LR;Hanchate, NK;Ye, X;Asher, G;Ho, J;Buck, LB;
PMID: 35610316 | DOI: 10.1038/s41598-022-12663-x
Scents have been employed for millennia to allay stress, but whether or how they might do so is largely unknown. Fear and stress induce increases in blood stress hormones controlled by hypothalamic corticotropin releasing hormone neurons (CRHNs). Here, we report that two common odorants block mouse stress hormone responses to three potent stressors: physical restraint, predator odor, and male-male social confrontation. One odorant inhibits restraint and predator odor activation of excitatory neurons upstream of CRHNs in the bed nucleus of the stria terminalis (BNSTa). In addition, both activate inhibitory neurons upstream of CRHNs in the hypothalamic ventromedial nucleus (VMH) and silencing of VMH inhibitory neurons hinders odor blocking of stress. Together, these findings indicate that odor blocking can occur via two mechanisms: (1) Inhibition of excitatory neurons that transmit stress signals to CRHNs and (2) activation of inhibitory neurons that act directly or indirectly to inhibit stressor activation of CRHNs.
Tye, CE;Ghule, PN;Gordon, JAR;Kabala, FS;Page, NA;Falcone, MM;Tracy, KM;van Wijnen, AJ;Stein, JL;Lian, JB;Stein, GS;
PMID: 35546168 | DOI: 10.1038/s41598-022-11814-4
Bone formation requires osteogenic differentiation of multipotent mesenchymal stromal cells (MSCs) and lineage progression of committed osteoblast precursors. Osteogenic phenotype commitment is epigenetically controlled by genomic (chromatin) and non-genomic (non-coding RNA) mechanisms. Control of osteogenesis by long non-coding RNAs remains a largely unexplored molecular frontier. Here, we performed comprehensive transcriptome analysis at early stages of osteogenic cell fate determination in human MSCs, focusing on expression of lncRNAs. We identified a chromatin-bound lncRNA (MIR181A1HG) that is highly expressed in self-renewing MSCs. MIR181A1HG is down-regulated when MSCs become osteogenic lineage committed and is retained during adipogenic differentiation, suggesting lineage-related molecular functions. Consistent with a key role in human MSC proliferation and survival, we demonstrate that knockdown of MIR181A1HG in the absence of osteogenic stimuli impedes cell cycle progression. Loss of MIR181A1HG enhances differentiation into osteo-chondroprogenitors that produce multiple extracellular matrix proteins. RNA-seq analysis shows that loss of chromatin-bound MIR181A1HG alters expression and BMP2 responsiveness of skeletal gene networks (e.g., SOX5 and DLX5). We propose that MIR181A1HG is a novel epigenetic regulator of early stages of mesenchymal lineage commitment towards osteo-chondroprogenitors. This discovery permits consideration of MIR181A1HG and its associated regulatory pathways as targets for promoting new bone formation in skeletal disorders.
Shibata, T;Kawana, H;Nishino, Y;Ito, Y;Sato, H;Onishi, H;Kano, K;Inoue, A;Taketomi, Y;Murakami, M;Kofuji, S;Nishina, H;Miyazawa, A;Kono, N;Aoki, J;
PMID: 35508627 | DOI: 10.1038/s41598-022-11002-4
Phospholipids in the membrane consist of diverse pairs of fatty acids bound to a glycerol backbone. The biological significance of the diversity, however, remains mostly unclear. Part of this diversity is due to lysophospholipid acyltransferases (LPLATs), which introduce a fatty acid into lysophospholipids. The human genome has 14 LPLATs and most of them are highly conserved in vertebrates. Here, we analyzed the function of one of these enzymes, lysophosphatidylglycerol acyltransferase 1 (Lpgat1), in zebrafish. We found that the reproduction of heterozygous (lpgat1+/-) male mutants was abnormal. Crosses between heterozygous males and wild-type females produced many eggs with no obvious cleavage, whereas eggs produced by crosses between heterozygous females and wild-type males cleaved normally. Consistent with this, spermatozoa from heterozygous males had reduced motility and abnormal morphology. We also found that the occurrence of lpgat1 homozygous (lpgat1-/-) mutants was far lower than expected. In addition, downregulation of lpgat1 by morpholino antisense oligonucleotides resulted in severe developmental defects. Lipidomic analysis revealed that selective phospholipid species with stearic acid and docosahexaenoic acid were reduced in homozygous larvae and spermatozoa from heterozygotes. These results suggest that the specific phospholipid molecular species produced by Lpgat1 have an essential role in sperm fertilization and in embryonic development.
Shah, AH;Govindarajan, V;Doucet-O'Hare, TT;Rivas, S;Ampie, L;DeMarino, C;Banasavadi-Siddegowda, YK;Zhang, Y;Johnson, KR;Almsned, F;Gilbert, MR;Heiss, JD;Nath, A;
PMID: 35477752 | DOI: 10.1038/s41598-022-10914-5
Comprising approximately 8% of our genome, Human Endogenous RetroViruses (HERVs) represent a class of germline retroviral infections that are regulated through epigenetic modifications. In cancer cells, which often have epigenetic dysregulation, HERVs have been implicated as potential oncogenic drivers. However, their role in gliomas is not known. Given the link between HERV expression in cancer cell lines and the distinct epigenetic dysregulation in gliomas, we utilized a tailored bioinformatic pipeline to characterize and validate the glioma retrotranscriptome and correlate HERV expression with locus-specific epigenetic modifications. We identified robust overexpression of multiple HERVs in our cell lines, including a retroviral transcript, HML-6, at 19q13.43b in glioblastoma cells. HERV expression inversely correlated with loci-specific DNA methylation. HML-6 contains an intact open reading frame encoding a small envelope protein, ERVK3-1. Increased expression of ERVK3-1 in GBM patients is associated with a poor prognosis independent of IDH-mutational status. Our results suggest that not only is HML-6 uniquely overexpressed in highly invasive cell lines and tissue samples, but also its gene product, ERVK3-1, may be associated with reduced survival in GBM patients. These results may have implications for both the tumor biology of GBM and the role of ERVK3-1 as a potential therapeutic target.
Granados-Aparici, S;Volodarsky-Perel, A;Yang, Q;Anam, S;Tulandi, T;Buckett, W;Son, WY;Younes, G;Chung, JT;Jin, S;Terret, MÉ;Clarke, HJ;
PMID: 35470858 | DOI: 10.1093/biolre/ioac078
Granulosa cells of growing ovarian follicles elaborate filopodia-like structures termed transzonal projections (TZPs) that supply the enclosed oocyte with factors essential for its development. Little is known, however, of the mechanisms underlying the generation of TZPs. We show in mouse and human that filopodia, defined by an actin backbone, emerge from granulosa cells in early-stage primary follicles and that actin-rich TZPs become detectable as soon as a space corresponding to the zona pellucida appears. mRNA encoding Myosin10 (MYO10), a motor protein that accumulates at the base and tips of filopodia and has been implicated in their initiation and elongation, is present in granulosa cells and oocytes of growing follicles. MYO10 protein accumulates in foci located mainly between the oocyte and innermost layer of granulosa cells, where it co-localizes with actin. In both mouse and human, the number of MYO10 foci increases as oocytes grow, corresponding to the increase in the number of actin-TZPs. RNAi-mediated depletion of MYO10 in cultured mouse granulosa cell-oocyte complexes is associated with a 52% reduction in the number of MYO10 foci and a 28% reduction in the number of actin-TZPs. Moreover, incubation of cumulus-oocyte complexes in the presence of epidermal growth factor, which triggers a 93% reduction in the number of actin-TZPs, is associated with a 55% reduction in the number of MYO10 foci. These results suggest that granulosa cells possess an ability to elaborate filopodia, which when directed towards the oocyte become actin-TZPs, and that MYO10 increases the efficiency of formation or maintenance of actin-TZPs.
International journal of molecular medicine
Boissière-Michot, F;Mollevi, C;Baecker, V;Crapez, E;Jacot, W;
PMID: 35475537 | DOI: 10.3892/ijmm.2022.5138
Urokinase plasminogen activator (uPA) and its inhibitor, plasminogen activator inhibitor type 1 (PAI‑1), have been reported as prognostic and predictive biomarkers in breast cancer, particularly in patients with node‑negative tumors. uPA and PAI‑1 expression levels classify patients into a poor‑prognosis subgroup, requiring adjuvant chemotherapy and a favorable‑prognosis subgroup, which can be considered for de‑escalation. However, the clinical use of these two biomarkers remains limited, since fresh‑frozen/fresh tumor samples are currently required for their quantification. The aim of the present study was to compare PLAU and SERPINE1 mRNA expression levels (corresponding to uPA and PAI‑1 proteins, respectively), assessed using in situ hybridization in 83 formalin‑fixed paraffin‑embedded (FFPE) breast tumor samples, with uPA and PAI‑1 protein expression assessed using immunometric assay with paired fresh‑frozen breast cancer samples. The results from the two methods significantly correlated as regards uPA quantification; however, >30% of the samples were discordant, according to the clinically validated threshold. Concordance between the two analytical methods was less prominent for PAI‑1 protein and SERPINE1 mRNA. Taken together, the results of the present study indicate that although PLAU and SERPINE1 mRNA may be reliably detected in FFPE samples using in situ hybridization, this technology cannot be used as a substitute for the replacement of the immunometric assay‑derived quantification on fresh‑frozen samples.
Du, Y;Yu, K;Yan, C;Wei, C;Zheng, Q;Qiao, Y;Liu, Y;Han, J;Ren, W;Liu, Z;
PMID: 35613854 | DOI: 10.1523/ENEURO.0487-21.2022
The endogenous opioid system plays a crucial role in stress-induced analgesia. Mu-opioid receptors (MORs), one of the major opioid receptors, are expressed widely in subpopulations of cells throughout the CNS. However, the potential roles of MORs expressed in glutamatergic (MORGlut) and γ-aminobutyric acidergic (MORGABA) neurons in stress-induced analgesia remain unclear. By examining tail-flick latencies to noxious radiant heat of male mice, here we investigated the contributions of MORGABA and MORGlut to behavioral analgesia and activities of neurons projecting from periaqueductal gray (PAG) to rostral ventromedial medulla (RVM) induced by a range of time courses of forced swim exposure. The moderate but not transitory or prolonged swim exposure induced a MOR-dependent analgesia, although all of these three stresses enhanced β-endorphin release. Selective deletion of MORGABA but not MORGlut clearly attenuated analgesia and blocked the enhancement of activities of PAG-RVM neurons induced by moderate swim exposure. Under transitory swim exposure, in contrast, selective deletion of MORGlut elicited an analgesia behavior via strengthening the activities of PAG-RVM neurons. These results indicate that MOR-dependent endogenous opioid signaling participates in nociceptive modulation in a wide range, not limited to moderate, of stress intensities. Endogenous activation of MORGABA exerts analgesia, whereas MORGlut produces antianalgesia. More importantly, with an increase of stress intensities, the efficiencies of MORs on nociception shifts from balance between MORGlut and MORGABA to biasing toward MORGABA-mediated processes. Our results point to the cellular dynamic characteristics of MORs expressed in excitatory and inhibitory neurons in pain modulation under various stress intensities.
Seehusen, F;Clark, JJ;Sharma, P;Bentley, EG;Kirby, A;Subramaniam, K;Wunderlin-Giuliani, S;Hughes, GL;Patterson, EI;Michael, BD;Owen, A;Hiscox, JA;Stewart, JP;Kipar, A;
PMID: 35632761 | DOI: 10.3390/v14051020
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2), we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, as well as after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally oriented regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and the possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates and broadly support the investigation of agents with adequate penetration into relevant regions of the CNS.
Bixler, SL;Stefan, CP;Jay, AN;Rossi, FD;Ricks, KM;Shoemaker, CJ;Moreau, AM;Zeng, X;Hooper, JW;Dyer, DN;Frick, OM;Koehler, JW;Kearney, BJ;DiPinto, N;Liu, J;Tostenson, SD;Clements, TL;Smith, JM;Johnson, JA;Berrier, KL;Esham, HL;Delp, KL;Coyne, SR;Bloomfield, HA;Kuehnert, PA;Akers, K;Gibson, KM;Minogue, TD;Nalca, A;Pitt, MLM;
PMID: 35632755 | DOI: 10.3390/v14051013
The emergence of SARS-CoV-2 and the subsequent pandemic has highlighted the need for animal models that faithfully replicate the salient features of COVID-19 disease in humans. These models are necessary for the rapid selection, testing, and evaluation of potential medical countermeasures. Here, we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure-combined intratracheal/intranasal and small particle aerosol-in two nonhuman primate species, rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models produced suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.
Rodrigues, TCS;Viadanna, PHO;Subramaniam, K;Hawkins, IK;Jeon, AB;Loeb, JC;Krauer, JMC;Lednicky, JA;Wisely, SM;Waltzek, TB;
PMID: 35632753 | DOI: 10.3390/v14051012
We report an outbreak of a novel reassortant epizootic hemorrhagic disease virus serotype 6 (EHDV-6) in white-tailed deer (WTD) on a Florida farm in 2019. At necropsy, most animals exhibited hemorrhagic lesions in the lung and heart, and congestion in the lung, liver, and spleen. Histopathology revealed multi-organ hemorrhage and congestion, and renal tubular necrosis. Tissues were screened by RT-qPCR and all animals tested positive for EHDV. Tissues were processed for virus isolation and next-generation sequencing was performed on cDNA libraries generated from the RNA extracts of cultures displaying cytopathic effects. Six isolates yielded nearly identical complete genome sequences of a novel U.S. EHDV-6 strain. Genetic and phylogenetic analyses revealed the novel strain to be most closely related to a reassortant EHDV-6 strain isolated from cattle in Trinidad and both strains received segment 4 from an Australian EHDV-2 strain. The novel U.S. EHDV-6 strain is unique in that it acquired segment 8 from an Australian EHDV-8 strain. An RNAscope in situ hybridization assay was developed against the novel U.S. EHDV-6 strain and labeling was detected within lesions of the heart, kidney, liver, and lung. These data support the novel U.S. reassortant EHDV-6 strain as the cause of disease in the farmed WTD.
King, RE;Bilger, A;Rademacher, J;Ward-Shaw, ET;Hu, R;Lambert, PF;Thibeault, SL;
PMID: 35632742 | DOI: 10.3390/v14051000
Recurrent respiratory papillomatosis (RRP), caused by laryngeal infection with low-risk human papillomaviruses, has devastating effects on vocal communication and quality of life. Factors in RRP onset, other than viral presence in the airway, are poorly understood. RRP research has been stalled by limited preclinical models. The only known papillomavirus able to infect laboratory mice, Mus musculus papillomavirus (MmuPV1), induces disease in a variety of tissues. We hypothesized that MmuPV1 could infect the larynx as a foundation for a preclinical model of RRP. We further hypothesized that epithelial injury would enhance the ability of MmuPV1 to cause laryngeal disease, because injury is a potential factor in RRP and promotes MmuPV1 infection in other tissues. In this report, we infected larynges of NOD scid gamma mice with MmuPV1 with and without vocal fold abrasion and measured infection and disease pathogenesis over 12 weeks. Laryngeal disease incidence and severity increased earlier in mice that underwent injury in addition to infection. However, laryngeal disease emerged in all infected mice by week 12, with or without injury. Secondary laryngeal infections and disease arose in nude mice after MmuPV1 skin infections, confirming that experimentally induced injury is dispensable for laryngeal MmuPV1 infection and disease in immunocompromised mice. Unlike RRP, lesions were relatively flat dysplasias and they could progress to cancer. Similar to RRP, MmuPV1 transcript was detected in all laryngeal disease and in clinically normal larynges. MmuPV1 capsid protein was largely absent from the larynx, but productive infection arose in a case of squamous metaplasia at the level of the cricoid cartilage. Similar to RRP, disease spread beyond the larynx to the trachea and bronchi. This first report of laryngeal MmuPV1 infection provides a foundation for a preclinical model of RRP.