Journal of Diabetes Research
2016 Jan 10
Cucak H, Hansen G, Vrang N, Skarsfeldt T, Steiness E, Jelsing J.
PMID: - | DOI: 10.1155/2016/7484601
The cytokine interleukin-1β (IL-1β) is known to stimulate proinflammatory immune responses and impair β-cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1β activated pathways.
Neuron
2016 Jan 06
Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S, Krol J, Franke F, Scherf BG, Kusnyerik A, Müller J, Szabo A, Jüttner J, Cordoba F, Reddy AP, Németh J, Nagy ZZ, Munier F, Hierlemann A, Roska B.
PMID: 26711119 | DOI: 10.1016/j.neuron.2015.11.032.
Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease.
Mol Endocrinol
2015 Nov 29
George NM, Boerner BP, Mir SU, Guinn Z, Sarvetnick NE.
PMID: 26378466 | DOI: 10.1210/me.2014-1375.
Loss of pancreas β-cell function is the precipitating factor in all forms of diabetes. Cell replacement therapies, such as islet transplantation, remain the best hope for a cure; however, widespread implementation of this method is hampered by availability of donor tissue. Thus, strategies that expand functional β-cell mass are crucial for widespread usage in diabetes cell replacement therapy. Here, we investigate the regulation of the Hippo-target protein, Yes-associated protein (Yap), during development of the endocrine pancreas and its function after reactivation in human cadaveric islets. Our results demonstrate that Yap expression is extinguished at the mRNA level after neurogenin-3-dependent specification of the pancreas endocrine lineage, correlating with proliferation decreases in these cells. Interestingly, when a constitutively active form of Yap was expressed in human cadaver islets robust increases in proliferation were noted within insulin-producing β-cells. Importantly, proliferation in these cells occurs without negatively affecting β-cell differentiation or functional status. Finally, we show that the proproliferative mammalian target of rapamycin pathway is activated after Yap expression, providing at least one explanation for the observed increases in β-cell proliferation. Together, these results provide a foundation for manipulating Yap activity as a novel approach to expand functional islet mass for diabetes regenerative therapy.
Advances in Virus Research
2016 Feb 15
David C. Bloom
PMID: - | DOI: 10.1016/bs.aivir.2015.10.001
Alphaherpesviruses infect a variety of species from sea turtles to man and can cause significant disease in mammals including humans and livestock. These viruses are characterized by a lytic and latent state in nerve ganglia, with the ability to establish a lifelong latent infection that is interrupted by periodic reactivation. Previously, it was accepted that latency was a dominant state and that only during relatively infrequent reactivation episodes did latent genomes within ganglia become transcriptionally active. Here, we review recent data, focusing mainly on Herpes Simplex Virus type 1 which indicate that the latent state is more dynamic than recently appreciated.
Cancer Research
2016 Feb 12
De Monte L, Woermann S, Brunetto E, Heltai S, Magliacane G, Reni M, Paganoni AM, Recalde H, Mondino A, Falconi M, Aleotti F, Balzano G, Algül H, Doglioni C, Protti MP.
PMID: 26873846 | DOI: -
In pancreatic ductal adenocarcinomas (PDAC), lymphoid infiltrates comprised mainly of T helper 2 (Th2) cells predict a poor survival outcome in patients. IL-4 signaling has been suggested to stabilize the Th2 phenotype in this setting, but the cellular source of IL-4 in PDAC is unclear. Here we show that basophils expressing IL-4 are enriched in tumor-draining lymph nodes (TDLNs) of PDAC patients. Basophils present in TDLNs correlated significantly with the Th2/Th1 cell ratio in tumors, where they served as an independent prognostic biomarker of patient survival after surgery. Investigations in mouse models of pancreatic cancer confirmed a functional role for basophils during tumor progression. Recruitment of basophils into TDLN relied partly upon the release of chemokine CCL7/MCP3 by "alternatively activated" monocytes, whereas basophil activation was induced by T-cell-derived IL-3. Our results show how basophils recruited and activated in TDLNs under the influence of the tumor microenvironment regulate tumor-promoting Th2 inflammation in PDAC, helping illuminating a key element of the immune milieu of pancreatic cancer.
Mod Pathol.
2016 Feb 19
Wu G, Barnhill RL, Lee S, Li Y, Shao Y, Easton J, Dalton J, Zhang J, Pappo A, Bahrami A.
PMID: 26892443 | DOI: 10.1038/modpathol.2016.37.
Kinase activation by chromosomal translocations is a common mechanism that drives tumorigenesis in spitzoid neoplasms. To explore the landscape of fusion transcripts in these tumors, we performed whole-transcriptome sequencing using formalin-fixed, paraffin-embedded (FFPE) tissues in malignant or biologically indeterminate spitzoid tumors from 7 patients (age 2-14 years). RNA sequence libraries enriched for coding regions were prepared and the sequencing was analyzed by a novel assembly-based algorithm designed for detecting complex fusions. In addition, tumor samples were screened for hotspot TERT promoter mutations, and telomerase expression was assessed by TERT mRNA in situ hybridization (ISH). Two patients had widespread metastasis and subsequently died of disease, and 5 patients had a benign clinical course on limited follow-up (mean: 30 months). RNA sequencing and TERT mRNA ISH were successful in six tumors and unsuccessful in one disseminating tumor because of low RNA quality. RNA sequencing identified a kinase fusion in five of the six sequenced tumors: TPM3-NTRK1 (2 tumors), complex rearrangements involving TPM3, ALK, and IL6R (1 tumor), BAIAP2L1-BRAF (1 tumor), and EML4-BRAF (1 disseminating tumor). All predicted chimeric transcripts were expressed at high levels and contained the intact kinase domain. In addition, two tumors each contained a second fusion gene, ARID1B-SNX9 or PTPRZ1-NFAM1. The detected chimeric genes were validated by home-brew break-apart or fusion fluorescence in situ hybridization (FISH). The two disseminating tumors each harbored the TERT promoter -124C>T (Chr 5:1,295,228 hg19 coordinate) mutation, whereas the remaining five tumors retained the wild-type gene. The presence of the -124C>T mutation correlated with telomerase expression by TERT mRNA ISH. In summary, we demonstrated complex fusion transcripts and novel partner genes for BRAF by RNA sequencing of FFPE samples. The diversity of gene fusions demonstrated by RNA sequencing defines the molecular heterogeneity of spitzoid neoplasms.
Matrix Biology
2016 Feb 18
Duan X, Bradbury SR, Olsen BR, Berendsen AD.
PMID: 26899202 | DOI: 10.1016/j.matbio.2016.02.005.
Deficiency of vascular endothelial growth factor A (VEGF) has been associated with severe craniofacial anomalies in both humans and mice. Cranial neural crest cell (NCC)-derived VEGF regulates proliferation, vascularization and ossification of cartilage and membranous bone. However, the function of VEGF derived from specific subpopulations of NCCs in controlling unique aspects of craniofacial morphogenesis is not clear. In this study a conditional knockdown strategy was used to genetically delete Vegfa expression in Osterix (Osx) and collagen II (Col2)-expressing NCC descendants. No major defects in calvaria and mandibular morphogenesis were observed upon knockdown of VEGF in the Col2+ cell population. In contrast, loss of VEGF in Osx+ osteoblast progenitor cells led to reduced ossification of calvarial and mandibular bones without affecting the formation of cartilage templates in newborn mice. The early stages of ossification in the developing jaw revealed decreased initial mineralization levels and a reduced thickness of the collagen I (Col1)-positive bone template upon loss of VEGF in Osx+ precursors. Increased numbers of proliferating cells were detected within the jaw mesenchyme of mutant embryos. Explant culture assays revealed that mandibular osteogenesis occurred independently of paracrine VEGF action and vascular development. Reduced VEGF expression in mandibles coincided with increased phospho-Smad1/5 (P-Smad1/5) levels and bone morphogenetic protein 2 (Bmp2) expression in the jaw mesenchyme. We conclude that VEGF derived from Osx+ osteoblast progenitor cells is required for optimal ossification of developing mandibular bones and modulates mechanisms controlling BMP-dependent specification and expansion of the jaw mesenchyme.
Biomedicine & Pharmacotherapy
2016 Feb 16
Ongurua O, Yalcinc S, Rosemblitd C, Zhangb PJ, Kilice S, Gunduzf U.
PMID: - | DOI: 10.1016/j.biopha.2016.02.004
APOBEC3B belongs to a protein family of cytidine deaminases that can insert mutations in DNA and RNA as a result of their ability to deaminate cytidine to uridine. It has been shown that APOBEC3B-catalysed deamination provides a chronic source of DNA damage in breast cancers. We investigated APOBEC3B expression in four drug resistant breast cancer cell lines (Doxorubicin, Etoposide, Paclitaxel and Docetaxel resistant MCF-7 cell lines) using a novel RNA in situ hybridization technology (RNAscope) and compared expression levels with drug sensitive MCF-7 cell line. After RNAscope staining, slides were scanned and saved as digital images using Aperio scanner and software. Quantitative scoring utilizing the number of punctate dots present within each cell boundary was performed for the parameters including positive cell percentage and signal intensity per positive cell. In Doxorubicin and Etoposide resistant MCF-7 cell lines, APOBEC3B expression was approximately five-fold increased (23% and 24% respectively) with higher signal intensity (1.92 and 1.44 signal/cell, respectively) compared to drug sensitive MCF-7 cell line (5%, 1.00 signal/cell) with statistical significance. The increase of APOBEC3B expression in Docataxel resitant and Paclitaxel resistant MCF-7 cell lines was not very high. In conclusion, APOBEC3B expression was increased in some population of tumor cells of drug resistant cell lines. At least for some drugs, APOBEC3B expression may be related to drug resistance, subjecting to some tumor cells to frequent mutation.
J Virol.
2016 Feb 17
Widagdo W, Raj VS, Schipper D, Kolijn K, van Leenders GJ, Bosch BJ, Bensaid A, Segalés J, Baumgärtner W, Osterhaus AD, Koopmans MP, van den Brand JM, Haagmans BL.
PMID: 26889022 | DOI: -
Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor - dipeptidyl peptidase 4 (DPP4) - is expressed in the upper respiratory tract epithelium of camels but not humans. Lack of DPP4 expression may be the primary cause of limited MERS-CoV replication in the human upper respiratory tract, hence restrict transmission.
Cancer
2016 Feb 16
McDowell LJ, Young RJ, Johnston ML, Tan TJ, Kleid S, Liu CS, Bressel M, Estall V, Rischin D, Solomon B, Corry J.
PMID: 26881928 | DOI: 10.1002/cncr.29901.Abstract BACKGROUND: The incidence of p16 overexpression and the role of human papillomavirus (HPV) in cutaneous head and neck squamous cell carcinoma (cHNSCC) are unclear. METHODS: One hundred forty-three patients with cHNSCC lymph nod
The incidence of p16 overexpression and the role of human papillomavirus (HPV) in cutaneous head and neck squamous cell carcinoma (cHNSCC) are unclear.
One hundred forty-three patients with cHNSCC lymph node metastases involving the parotid gland were evaluated for p16 expression by immunohistochemistry. The detection of 18 high-risk HPV subtypes was performed with HPV RNA in situ hybridization for a subset of 59 patients. The results were correlated with clinicopathological features and outcomes.
The median follow-up time was 5.3 years. No differences were observed in clinicopathological factors with respect to the p16 status. p16 was positive, weak, and negative in 45 (31%), 21 (15%), and 77 cases (54%), respectively. No high-risk HPV subtypes were identified, regardless of the p16 status. The p16 status was not prognostic for overall (hazard ratio, 1.08; 95% confidence interval [CI], 0.85-1.36; P = .528), cancer-specific (hazard ratio, 1.12; 95% CI, 0.77-1.64; P = .542), or progression-free survival (hazard ratio, 1.03; 95% CI, 0.83-1.29; P = .783). Distant metastasis-free survival, freedom from locoregional failure, and freedom from local failure were also not significantly associated with the p16 status.
p16 positivity is common but not prognostic in cHNSCC lymph node metastases. High-risk HPV subtypes are not associated with p16 positivity and do not appear to play a role in this disease. HPV testing, in addition to the p16 status in the unknown primary setting, may provide additional information for determining a putative primary site.
EMBO J.
2016 Feb 24
Chen Y, Li Y, Xue J, Gong A, Yu G, Zhou A, Lin K, Zhang S, Zhang N, Gottardi CJ, Huang S.
PMID: 26912724 | DOI: -
A key step of Wnt signaling activation is the recruitment of β-catenin to the Wnt target-gene promoter in the nucleus, but its mechanisms are largely unknown. Here, we identified FoxM1 as a novel target of Wnt signaling, which is essential for β-catenin/TCF4 transactivation. GSK3 phosphorylates FoxM1 on serine 474 which induces FoxM1 ubiquitination mediated by FBXW7. Wnt signaling activation inhibits FoxM1 phosphorylation by GSK3-Axin complex and leads to interaction between FoxM1 and deubiquitinating enzyme USP5, thereby deubiquitination and stabilization of FoxM1. FoxM1 accumulation in the nucleus promotes recruitment of β-catenin to Wnt target-gene promoter and activates the Wnt signaling pathway by protecting the β-catenin/TCF4 complex from ICAT inhibition. Subsequently, the USP5-FoxM1 axis abolishes the inhibitory effect of ICAT and is required for Wnt-mediated tumor cell proliferation. Therefore, Wnt-induced deubiquitination of FoxM1 represents a novel and critical mechanism for controlling canonical Wnt signaling and cell proliferation.
J Pharmacol Exp Ther.
2016 Feb 22
Sushchyk SA, Xi ZX, Wang JB.
PMID: 26903543 | DOI: -
Relapse to drug use is often cited as the major obstacle in overcoming a drug addiction. While relapse can occurs for a myriad of reasons it is well established the complex neuroadaptations, which occur over the course of addiction, are major factors. Cocaine, as a potent dopamine transporter blocker, specifically induces alterations in the dopaminergic as well as other monoaminergic neurotransmissions, which lead to cocaine abuse and dependence. Evidence also suggests that adaptations in the endogenous opioids play important roles in pathophysiology of cocaine addiction. Following this evidence, we investigated a combination medication, levo-tetrahydropalmatine (l-THP) and low dose naltrexone (LDN), targeting primarily dopaminergic and endogenous opioid systems as a cocaine relapse prevention treatment. In the present study Wistar rats were used to assess the effects of l-THP and LDN on cocaine self-administration, drug-seeking behavior during cocaine reinstatement, spontaneous locomotion, and effects on the endogenous opioid system. We determine the combination of l-THP and LDN reduces drug-seeking behavior during reinstatement potently than l-THP alone. Additionally, the combination of l-THP and LDN attenuates the sedative locomotor effect induced by l-THP. Furthermore, we revealed that treatment with the combination of l-THP and LDN has an upregulatory effect on both plasma β-endorphin and hypothalamic POMC that was not observed in l-THP-treated groups. These results suggest that the combination of l-THP and LDN has great potential as an effective and well-tolerated medication for cocaine relapse prevention.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com