Wallace ML, Huang KW, Hochbaum D, Hyun M, Radeljic G, Sabatini BL
PMID: 32043968 | DOI: 10.7554/eLife.51271
The lateral habenula (LHb) is an epithalamic brain structure critical for processing and adapting to negative action outcomes. However, despite the importance of LHb to behavior and the clear anatomical and molecular diversity of LHb neurons, the neuron types of the habenula remain unknown. Here, we use high-throughput single-cell transcriptional profiling, monosynaptic retrograde tracing, and multiplexed FISH to characterize the cells of the mouse habenula. We find five subtypes of neurons in the medial habenula (MHb) that are organized into anatomical subregions. In the LHb, we describe four neuronal subtypes and show that they differentially target dopaminergic and GABAergic cells in the ventral tegmental area (VTA). These data provide a valuable resource for future study of habenular function and dysfunction and demonstrate neuronal subtype specificity in the LHb-VTA circuit
Heinsbroek JA1, Bobadilla AC2, Dereschewitz E2, Assali A2, Chalhoub RM2, Cowan CW2, Kalivas PW3.
PMID: 32049028 | DOI: 10.1016/j.celrep.2020.01.023
Projections from the nucleus accumbens to the ventral pallidum (VP) regulate relapse in animal models of addiction. The VP contains GABAergic (VPGABA) and glutamatergic (VPGlu) neurons, and a subpopulation of GABAergic neurons co-express enkephalin (VPPenk). Rabies tracing reveals that VPGlu and VPPenk neurons receive preferential innervation from upstream D1- relative to D2-expressing accumbens neurons. Chemogenetic stimulation of VPGlu neurons inhibits, whereas stimulation of VPGABA and VPPenk neurons potentiates cocaine seeking in mice withdrawn from intravenous cocaine self-administration. Calcium imaging reveals cell type-specific activity patterns when animals learn to suppress drug seeking during extinction training versus engaging in cue-induced cocaine seeking. During cued seeking, VPGABA neurons increase their overall activity, and VPPenk neurons are selectively activated around nose pokes for cocaine. In contrast, VPGlu neurons increase their spike rate following extinction training. These data show that VP subpopulations differentially encode and regulate cocaine seeking, with VPPenk and VPGABA neurons facilitating and VPGlu neurons inhibiting cocaine seeking
Ruscitto A, Morel MM, Shawber CJ, Reeve G, Lecholop MK, Bonthius D, Yao H, Embree MC
PMID: 32030828 | DOI: 10.1096/fj.201902287R
Temporomandibular joint osteoarthritis (TMJ OA) leads to permanent cartilage destruction, jaw dysfunction, and compromises the quality of life. However, the pathological mechanisms governing TMJ OA are poorly understood. Unlike appendicular articular cartilage, the TMJ has two distinct functions as the synovial joint of the craniofacial complex and also as the site for endochondral jaw bone growth. The established dogma of endochondral bone ossification is that hypertrophic chondrocytes undergo apoptosis, while invading vasculature with osteoprogenitors replace cartilage with bone. However, contemporary murine genetic studies support the direct differentiation of chondrocytes into osteoblasts and osteocytes in the TMJ. Here we sought to characterize putative vasculature and cartilage to bone transdifferentiation using healthy and diseased TMJ tissues from miniature pigs and humans. During endochondral ossification, the presence of fully formed vasculature expressing CD31+ endothelial cells and ?-SMA+ vascular smooth muscle cells were detected within all cellular zones in growing miniature pigs. Arterial, endothelial, venous, angiogenic, and mural cell markers were significantly upregulated in miniature pig TMJ tissues relative to donor matched knee meniscus fibrocartilage tissue. Upon surgically creating TMJ OA in miniature pigs, we discovered increased vasculature and putative chondrocyte to osteoblast transformation dually marked by COL2 and BSP or RUNX2 within the vascular bundles. Pathological human TMJ tissues also exhibited increased vasculature, while isolated diseased human TMJ cells exhibited marked increased in vasculature markers relative to control 293T cells. Our study provides evidence to suggest that the TMJ in higher order species are in fact vascularized. There have been no reports of cartilage to bone transdifferentiation or vasculature in human-relevant TMJ OA large animal models or in human TMJ tissues and cells. Therefore, these findings may potentially alter the clinical management of TMJ OA by defining new drugs that target angiogenesis or block the cartilage to bone transformation
Yosten GL, Harada CM, Haddock CJ, Giancotti LA, Kolar GR, Patel R, Guo C, Chen Z, Zhang J, Doyle TM, Dickenson AH, Samson WK, Salvemini D.
PMID: 31999650 | DOI: 10.1172/JCI133270
Treating neuropathic pain is challenging and novel non-opioid based medicines are needed. Using unbiased receptomics, transcriptomic analyses, immunofluorescence and in situ hybridization, we found the expression of the orphan GPCR (oGPCR) Gpr160 and GPR160 increased in the rodent dorsal horn of the spinal cord (DH-SC) following traumatic nerve injury. Genetic and immunopharmacological approaches demonstrated that GPR160 inhibition in the spinal cord prevented and reversed neuropathic pain in male and female rodents without altering normal pain response. GPR160 inhibition in the spinal cord attenuated sensory processing in the thalamus, a key relay in the sensory discriminative pathways of pain. We also identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a GPR160 ligand. Inhibiting endogenous CARTp signaling in spinal cord attenuated neuropathic pain, whereas exogenous intrathecal (i.th.) CARTp evoked painful hypersensitivity through GPR160-dependent ERK and cAMP response element-binding protein (CREB). Our findings de-orphanize GPR160, identify it as a determinant of neuropathic pain and potential therapeutic target, and provide insights to its signaling pathways. CARTp is involved in many diseases including depression, reward and addiction, de-orphanization of GPR160 is a major step forward understanding the role of CARTp signaling in health and disease
Terai M, Londin E, Rochani A, Link E, Lam B, Kaushal G, Bhushan A, Orloff M, Sato T
PMID: 32050636 | DOI: 10.3390/cancers12020405
Uveal melanoma (UM) is the most common primary eye malignancy in adults and up to 50% of patients subsequently develop systemic metastasis. Metastatic uveal melanoma (MUM) is highly resistant to immunotherapy. One of the mechanisms for resistance would be the immune-suppressive tumor microenvironment. Here, we have investigated the role of tryptophan 2,3-dioxygenase (TDO) in UM. Both TDO and indoleamine 2,3-dioxygenase (IDO) catalyze tryptophan and produce kynurenine, which could cause inhibition of T cell immune responses. We first studied the expression of TDO on tumor tissue specimens obtained from UM hepatic metastasis. High expression of TDO protein was confirmed in all hepatic metastasis. TDO was positive in both normal hepatocytes and the tumor cells with relatively higher expression in tumor cells. On the other hand, IDO protein remained undetectable in all of the MUM specimens. UM cell lines established from metastasis also expressed TDO protein and increasing kynurenine levels were detected in the supernatant of MUM cell culture. In TCGA database, higher TDO2 expression in primary UM significantly correlated to BAP1 mutation and monosomy 3. These results indicate that TDO might be one of the key mechanisms for resistance to immunotherapy in UM
Invest Ophthalmol Vis Sci.
Sun M, Wadehra M, Casero D, Lin MC, Aguirre B, Parikh S, Matynia A, Gordon L, Chu A
PMID: 32031575 | DOI: 10.1167/iovs.61.2.3
PURPOSE:
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. ROP occurs as a consequence of postnatal hyperoxia exposure in premature infants, resulting in vasoproliferation in the retina. The tetraspan protein epithelial membrane protein-2 (EMP2) is highly expressed in the retinal pigment epithelium (RPE) in adults, and it controls vascular endothelial growth factor (VEGF) production in the ARPE-19 cell line. We, therefore, hypothesized that Emp2 knockout (Emp2 KO) protects against neovascularization in murine oxygen-induced retinopathy (OIR).
METHODS:
Eyes were obtained from wildtype (WT) and Emp2 KO mouse pups at P7, P12, P17, and P21 after normoxia or hyperoxia (P7-P12) exposure. Following hyperoxia exposure, RNA sequencing was performed using the retina/choroid layers obtained from WT and Emp2 KO at P17. Retinal sections from P7, P12, P17, and P21 were evaluated for Emp2, hypoxia-inducible factor 1? (Hif1?), and VEGF expression. Whole mount images were generated to assess vaso-obliteration at P12 and neovascularization at P17.
RESULTS:
Emp2 KO OIR mice demonstrated a decrease in pathologic neovascularization at P17 compared with WT OIR mice through evaluation of retinal vascular whole mount images. This protection was accompanied by a decrease in Hif1? at P12 and VEGFA expression at P17 in Emp2 KO animals compared with the WT animals in OIR conditions. Collectively, our results suggest that EMP2 enhances the effects of neovascularization through modulation of angiogenic signaling.
CONCLUSIONS:
The protection of Emp2 KO mice against pathologic neovascularization through attenuation of HIF and VEGF upregulation in OIR suggests that hypoxia-induced upregulation of EMP2 expression in the neuroretina modulates HIF-mediated neuroretinal VEGF expression
Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, Jiang L, Yu L, Zhuo M, Qiu S
PMID: 32005806 | DOI: 10.1038/s41467-020-14281-5
Reduced food intake is common to many pathological conditions, such as infection and toxin exposure. However, cortical circuits that mediate feeding responses to these threats are less investigated. The anterior insular cortex (aIC) is a core region that integrates interoceptive states and emotional awareness and consequently guides behavioral responses. Here, we demonstrate that the right-side aIC CamKII+ (aICCamKII) neurons in mice are activated by aversive visceral signals. Hyperactivation of the right-side aICCamKII neurons attenuates food consumption, while inhibition of these neurons increases feeding and reverses aversive stimuli-induced anorexia and weight loss. Similar manipulation at the left-side aIC does not cause significant behavioral changes. Furthermore, virus tracing reveals that aICCamKII neurons project directly to the vGluT2+ neurons in the lateral hypothalamus (LH), and the right-side aICCamKII-to-LH pathway mediates feeding suppression. Our studies uncover a circuit from the cortex to the hypothalamus that senses aversive visceral signals and controls feeding behavior
Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, Wei XF, Han W, Wang H
PMID: 31999649 | DOI: 10.1172/jci.insight.133977
Free full text
In recent years, chimeric antigen receptor-modified T cell (CAR T cell) therapy has proven to be a promising approach against cancer. Nonetheless, this approach still faces multiple challenges in eliminating solid tumors, one of which being the immunosuppressive tumor microenvironment (TME). Here, we demonstrated that knocking out the endogenous TGF-? receptor II (TGFBR2) in CAR T cells with CRISPR/Cas9 technology could reduce the induced Treg conversion and prevent the exhaustion of CAR T ce lls. Meanwhile, TGFBR2-edited CAR T cells had better in vivo tumor elimination efficacy, both in cell line-derived xenograft and patient-derived xenograft solid tumor models, whether administered locally or systemically. In addition, the TGFBR2-edited CAR T cells could eliminate contralaterally reinoculated xenografts in mice effectively, with an increased proportion of memory subsets within circulating CAR T cells of central memory and effector memory subsets. In conclusion, we greatly improved the in vitro and in vivo function of CAR T cells in TGF-?-rich tumor environments by knocking out endogenous TGFBR2 and propose a potentially new method to improve the efficacy of CAR T cell therapy for treating solid tumors
Toms M, Dubis AM, de Vrieze E, Tracey-White D, Mitsios A, Hayes M, Broekman S, Baxendale S, Utoomprurkporn N, Bamiou D, Bitner-Glindzicz M, Webster AR, Van Wijk E, Moosajee M.
PMID: 31998945 | DOI: 10.1093/hmg/ddaa004
USH2A variants are the most common cause of Usher syndrome type 2, characterised by congenital sensorineural hearing loss and retinitis pigmentosa (RP), and also contribute to autosomal recessive non-syndromic RP. Several treatment strategies are under development, however sensitive clinical trial endpoint metrics to determine therapeutic efficacy have not been identified. In the present study, we have performed longitudinal retrospective examination of the retinal and auditory symptoms in (i) 56 biallelic molecularly-confirmed USH2A patients and (ii) ush2a mutant zebrafish to identify metrics for the evaluation of future clinical trials and rapid preclinical screening studies. The patient cohort showed a statistically significant correlation between age and both rate of constriction for the ellipsoid zone length and hyperautofluorescent outer retinal ring area. Visual acuity and pure tone audiograms are not suitable outcome measures. Retinal examination of the novel ush2au507 zebrafish mutant revealed a slowly progressive degeneration of predominantly rods, accompanied by rhodopsin and blue cone opsin mislocalisation from 6-12 months of age with lysosome-like structures observed in the photoreceptors. This was further evaluated in the ush2armc zebrafish model, which revealed similar changes in photopigment mislocalisation with elevated autophagy levels at 6 days post fertilisation indicating a more severe genotype-phenotype correlation, and providing evidence of new insights into the pathophysiology underlying USH2A-retinal disease
Imai H, Hakukawa M, Hayashi M, Iwatsuki K, Masuda K
PMID: 32019181 | DOI: 10.3390/ijms21030902
(1) Background: Recent studies have investigated the expression of taste-related genes in the organs of various animals, including humans; however, data for additional taxa are needed to facilitate comparative analyses within and among species. (2) Methods: We investigated the expression of taste-related genes in the intestines of rhesus macaques, the non-human primates most commonly used in experimental models. (3) Results: Based on RNAseq and qRT-PCR, genes encoding bitter taste receptors and the G-protein gustducin were expressed in the gut of rhesus macaques. RNAscope analysis showed that one of the bitter receptors, TAS2R38, was expressed in some cells in the small intestine, and immunohistochemical analysis revealed the presence of T2R38-positive cells in the villi of the intestines. (4) Conclusions: These results suggest that bitter receptors are expressed in the gut of rhesus macaques, supporting the use of macaques as a model for studies of human taste, including gut analyses
Ali A, Syed SM, Jamaluddin MFB, Colino-Sanguino Y, Gallego-Ortega D, Tanwar PS
PMID: 32023462 | DOI: 10.1016/j.celrep.2020.01.003
The intact vaginal epithelium is essential for women's reproductive health and provides protection against HIV and sexually transmitted infections. How this epithelium maintains itself remains poorly understood. Here, we used single-cell RNA sequencing (RNA-seq) to define the diverse cell populations in the vaginal epithelium. We show that vaginal epithelial cell proliferation is limited to the basal compartment without any obvious label-retaining cells. Furthermore, we developed vaginal organoids and show that the basal cells have increased organoid forming efficiency. Importantly, Axin2 marks a self-renewing subpopulation of basal cells that gives rise to differentiated cells over time. These cells are ovariectomy-resistant stem cells as they proliferate even in the absence of hormones. Upon hormone supplementation, these cells expand and reconstitute the entire vaginal epithelium. Wnt/?-catenin is essential for the proliferation and differentiation of vaginal stem cells. Together, these data define heterogeneity in vaginal epithelium and identify vaginal epithelial stem cells
Arpan R Mehta, Bhuvaneish T Selvaraj, Samantha K Barton, Karina McDade, Sharon Abrahams, Siddharthan Chandran, Colin Smith, Jenna M Gregory
The C9orf72 hexanucleotide repeat expansion is the commonest known genetic mutation in amyotrophic lateral sclerosis. A neuropathological hallmark is the intracellular accumulation of RNA foci. The role that RNA foci play in the pathogenesis of amyotrophic lateral sclerosis is widely debated. Historically, C9orf72 RNA foci have been identified using in situ hybridization. Here, we have implemented BaseScopeル, a high-resolution modified in situ hybridization technique. We demonstrate that previous studies have underestimated the abundance of RNA foci in neurons and glia. This improved detection allowed us to investigate the abundance, regional distribution and cell type specificity of antisense C9orf72 RNA foci in post-mortem brain and spinal cord tissue of six deeply clinically phenotyped C9orf72 patients and six age- and sex-matched controls. We find a correlation between RNA foci and the accumulation of transactive response DNA-binding protein of 43?kDa in spinal motor neurons (rs = 0.93; P?=?0.008), but not in glia or cortical motor neurons. We also demonstrate that there is no correlation between the presence of RNA foci and the accumulation of transactive response DNA binding protein of 43?kDa in extra-motor brain regions. Furthermore, there is no association between the presence of RNA foci and cognitive indices. These results highlight the utility of BaseScopeル in the clinicopathological assessment of the role of antisense RNA foci in C9orf72.