Cell Rep
2019 May 21
Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P.
PMID: 31116992 | DOI: 10.1016/j.celrep.2019.04.096
Sensory functions of the vagus nerve are critical for conscious perceptions and for monitoring visceral functions in the cardio-pulmonary and gastrointestinal systems. Here, we present a comprehensive identification, classification, and validation of the neuron types in the neural crest (jugular) and placode (nodose) derived vagal ganglia by single-cell RNA sequencing (scRNA-seq) transcriptomic analysis. Our results reveal major differences between neurons derived from different embryonic origins. Jugular neurons exhibit fundamental similarities to the somatosensory spinal neurons, including major types, such as C-low threshold mechanoreceptors (C-LTMRs), A-LTMRs, Aδ-nociceptors, and cold-, and mechano-heat C-nociceptors. In contrast, the nodose ganglion contains 18 distinct types dedicated to surveying the physiological state of the internal body. Our results reveal a vast diversity of vagal neuron types, including many previously unanticipated types, as well as proposed types that are consistent with chemoreceptors, nutrient detectors, baroreceptors, and stretch and volume mechanoreceptors of the respiratory, gastrointestinal, and cardiovascular systems.
Cell Rep
2019 May 21
Xin W, Mironova YA, Shen H, Marino RAM, Waisman A, Lamers WH, Bergles DE, Bonci A.
PMID: 31116973 | DOI: 10.1016/j.celrep.2019.04.094
Glutamate has been implicated in a wide range of brain pathologies and is thought to be metabolized via the astrocyte-specific enzyme glutamine synthetase (GS). We show here that oligodendrocytes, the myelinating glia of the central nervous system, also express high levels of GS in caudal regions like the midbrain and the spinal cord. Selective removal of oligodendrocyte GS in mice led to reduced brain glutamate and glutamine levels and impaired glutamatergic synaptic transmission without disrupting myelination. Furthermore, animals lacking oligodendrocyte GS displayed deficits in cocaine-induced locomotor sensitization, a behavior that is dependent on glutamatergic signaling in the midbrain. Thus, oligodendrocytes support glutamatergic transmission through the actions of GS and may represent a therapeutic target for pathological conditions related to brain glutamate dysregulation.
Journal of Investigative Dermatology
2019 May 23
Sola-Carvajal A, Revêchon G, Helgadottir H, Whisenant D, Hagblom R, Döhla J, Katajisto P, Brodin D, Fagerström-Billai F, Viceconte N, Eriksson M.
PMID: 31128203 | DOI: 10.1016/j.jid.2019.05.005
Hutchinson-Gilford progeria syndrome (HGPS) is the result of a defective form of the lamin A protein called progerin. While progerin is known to disrupt the properties of the nuclear lamina, the underlying mechanisms responsible for the pathophysiology of HGPS remain less clear. Previous studies in our laboratory have shown that progerin expression in murine epidermal basal cells results in impaired stratification and halted development of the skin. Stratification and differentiation of the epidermis is regulated by asymmetric stem cell division. Here, we show that expression of progerin impairs the ability of stem cells to maintain tissue homeostasis as a result of altered cell division. Quantification of basal skin cells showed an increase in symmetric cell division that correlated with progerin accumulation in HGPS mice. Investigation of the mechanisms underlying this phenomenon revealed a putative role of Wnt/β-catenin signaling. Further analysis suggested an alteration in the nuclear translocation of β-catenin involving the inner and outer nuclear membrane proteins, emerin and nesprin-2. Taken together, our results suggest a direct involvement of progerin in the transmission of Wnt signaling and normal stem cell division. These insights into the molecular mechanisms of progerin may help develop new treatment strategies for HGPS
Nat Commun
2019 May 20
Rao-Ruiz P, Couey JJ, Marcelo IM, Bouwkamp CG, Slump DE, Matos MR, van der Loo RJ, Martins GJ, van den Hout M, van IJcken WF, Costa RM, van den Oever MC, Kushner SA.
PMID: 31110186 | DOI: 10.1038/s41467-019-09960-x
Sparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally implicated in the encoding of contextual fear memories. However, engram-specific molecular mechanisms underlying memory consolidation remain largely unknown. Here we perform unbiased RNA sequencing of DG engram neurons 24 h after contextual fear conditioning to identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit a highly distinct pattern of gene expression, in which CREB-dependent transcription features prominently (P = 6.2 × 10-13), including Atf3 (P = 2.4 × 10-41), Penk (P = 1.3 × 10-15), and Kcnq3 (P = 3.1 × 10-12). Moreover, we validate the functional relevance of the RNAseq findings by establishing the causal requirement of intact CREB function specifically within the DG engram during memory consolidation, and identify a novel group of CREB target genes involved in the encoding of long-term memory
Nature Commun
2019 May 24
Duan J, Navarro-Dorado J, Clark JH, Kinnear NP, Meinke P, Schirmer EC, Evans AM.
PMID: 31127110 | DOI: 10.1038/s41467-019-10055-w
Ca2+ coordinates diverse cellular processes, yet how function-specific signals arise is enigmatic. We describe a cell-wide network of distinct cytoplasmic nanocourses with the nucleus at its centre, demarcated by sarcoplasmic reticulum (SR) junctions (≤400 nm across) that restrict Ca2+ diffusion and by nanocourse-specific Ca2+-pumps that facilitate signal segregation. Ryanodine receptor subtype 1 (RyR1) supports relaxation of arterial myocytes by unloading Ca2+ into peripheral nanocourses delimited by plasmalemma-SR junctions, fed by sarco/endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b). Conversely, stimulus-specified increases in Ca2+ flux through RyR2/3 clusters selects for rapid propagation of Ca2+ signals throughout deeper extraperinuclear nanocourses and thus myocyte contraction. Nuclear envelope invaginations incorporating SERCA1 in their outer nuclear membranes demarcate further diverse networks of cytoplasmic nanocourses that receive Ca2+ signals through discrete RyR1 clusters, impacting gene expression through epigenetic marks segregated by their associated invaginations. Critically, this circuit is not hardwired and remodels for different outputs during cell proliferation.
Hum Pathol
2019 May 20
Randén-Brady R, Carpén T, Jouhi L, Syrjänen S, Haglund C, Tarkkanen J, Remes S, Mäkitie A, Mattila PS, Silén S, Hagström J.
PMID: 31121191 | DOI: 10.1016/j.humpath.2019.05.006
Current human papillomavirus (HPV) detection methods in oropharyngeal squamous cell carcinoma (OPSCC) have varying sensitivity and specificity. We aimed to compare different HPV-detection methods against the test used in clinical practice, ie, p16 immunohistochemistry (IHC) and to evaluate whether another HPV-detection test additional to p16 IHC would be worthwhile in OPSCC specimens. The study cohort comprised 357 consecutive OPSCC patients during two time periods: 2000-2009 and 2012-2016. From tumor tissue slides, HPV mRNA via in situ hybridization (ISH), HPV DNA via ISH and HPV DNA via polymerase chain reaction (PCR) were detected. The results of these methods were compared with p16 IHC results. Additionally, clinicopathological factors were compared with the methods studied. The sensitivity of HPV mRNA ISH, HPV DNA ISH and HPV DNA PCR were 93.4%, 86.3%, and 83.5%, respectively. The corresponding specificity was 92.4%, 95.3%, and 89.1%, respectively. The negative predictive value for p16 IHC was highest (89.0%) when using mRNA ISH, and followed by DNA ISH (83.5%). ISH for high-risk HPV E6/E7 mRNA was found to be a highly specific and sensitive method for detecting HPV in OPSCC. As p16 protein may be overexpressed due to HPV-independent mechanisms, all p16 IHC-positive OPSCCs should be considered for retesting using mRNA ISH in order to verify transcriptionally active HPV. This is especially critical when considering de-escalated treatment approaches for patients with HPV-positive tumors and still maintaining favorable outcomes for this subgroup of patients
Dev Cell
2019 May 20
Andersen RE, Hong SJ, Lim JJ, Cui M, Harpur BA, Hwang E, Delgado RN, Ramos AD, Liu SJ, Blencowe BJ, Lim DA.
PMID: 31112699 | DOI: 10.1016/j.devcel.2019.04.032
While it is now appreciated that certain long noncoding RNAs (lncRNAs) have important functions in cell biology, relatively few have been shown to regulate development in vivo, particularly with genetic strategies that establish cis versus trans mechanisms. Pnky is a nuclear-enriched lncRNA that is transcribed divergently from the neighboring proneural transcription factor Pou3f2. Here, we show that conditional deletion of Pnky from the developing cortex regulates the production of projection neurons from neural stem cells (NSCs) in a cell-autonomous manner, altering postnatal cortical lamination. Surprisingly, Pou3f2 expression is not disrupted by deletion of the entire Pnky gene. Moreover, expression of Pnky from a BAC transgene rescues the differential gene expression and increased neurogenesis of Pnky-knockout NSCs, as well as the developmental phenotypes of Pnky-deletion in vivo. Thus, despite being transcribed divergently from a key developmental transcription factor, the lncRNA Pnky regulates development in trans
Neuron
2019 May 10
Geraghty AC, Gibson EM, Ghanem RA, Greene JJ, Ocampo A, Goldstein AK, Ni L, Yang T, Marton RM, Paşca SP, Greenberg ME, Longo FM, Monje M.
PMID: 31122677 | DOI: 10.1016/j.neuron.2019.04.032
Activity-dependent myelination is thought to contribute to adaptive neurological function. However, the mechanisms by which activity regulates myelination and the extent to which myelin plasticity contributes to non-motor cognitive functions remain incompletely understood. Using a mouse model of chemotherapy-related cognitive impairment (CRCI), we recently demonstrated that methotrexate (MTX) chemotherapy induces complex glial dysfunction for which microglial activation is central. Here, we demonstrate that remote MTX exposure blocks activity-regulated myelination. MTX decreases cortical Bdnf expression, which is restored by microglial depletion. Bdnf-TrkB signaling is a required component of activity-dependent myelination. Oligodendrocyte precursor cell (OPC)-specific TrkB deletion in chemotherapy-naive mice results in impaired cognitive behavioral performance. A small-molecule TrkB agonist rescues both myelination and cognitive impairment after MTX chemotherapy. This rescue after MTX depends on intact TrkB expression in OPCs. Taken together, these findings demonstrate a molecular mechanism required for adaptive myelination that is aberrant in CRCI due to microglial activation
J Neurosci.
2019 May 01
Lemos JC, Shin JH, Alvarez VA.
PMID: 31109960 | DOI: 10.1523/JNEUROSCI.0479-19.2019
Cholinergic interneurons (CINs) are critical regulators of striatal network activity and output. Changes in CIN activity are thought to encode salient changes in the environment and stimulus-response-outcome associations. Here we report that the stress-associated neuropeptide corticotropin releasing factor (CRF) produces a profound and reliable increase in the spontaneous firing of CINs in both dorsal striatum and nucleus accumbens (NAc) through activation of CRF type 1 receptors, production of cAMP and reduction in spike accommodation in male mice. The increase of CIN firing by CRF results in the activation muscarinic acetylcholine receptors type 5, which mediate potentiation of dopamine transmission in the striatum. This study provides critical mechanistic insight into how CRF modulates striatal activity and dopamine transmission in the NAc to likely account for CRF facilitation of appetitive behaviors.SIGNIFICANCE STATEMENT Although the presence of CRF receptors in the dorsal and ventral striatum has been acknowledged, the cellular identity and the functional consequences of receptor activation is unknown. Here we report that striatal cholinergic interneurons express CRF-R1 receptors and are acutely activated by the neuropeptide CRF that is released in response to salient environmental stimuli. Cholinergic interneurons make <1% of the cells in the striatum but are critical regulators of the striatal circuitry and its output. CRF's fast and potent activation of cholinergic interneurons could have far reaching behavioral implications across motivated behaviors controlled by the striatum.
Endocr Pathol. 2019
2019 May 22
Yu Q, Hardin H, Chu YH, Rehrauer W, Lloyd RV.
PMID: 31119524 | DOI: 10.1007/s12022-019-9578-3
Parathyroid adenomas are slow growing benign neoplasms associated with hypercalcemia, while atypical parathyroid adenomas and parathyroid carcinomas are uncommon tumors and their histologic features may overlap with parathyroid adenomas. LncRNAs participate in transcription and in epigenetic or post-transcriptional regulation of gene expression, and probably contribute to carcinogenesis. We analyzed a group of normal, hyperplastic, and neoplastic parathyroid lesions to determine the best immunohistochemical markers to characterize these lesions and to determine the role of selected lncRNAs in tumor progression. A tissue microarray consisting of 111 cases of normal parathyroid (n = 14), primary hyperplasia (n = 15), secondary hyperplasia (n = 10), tertiary hyperplasia (n = 11), adenomas (n = 50), atypical adenomas (n = 7), and carcinomas (n = 4) was used. Immunohistochemical staining with antibodies against chromogranin A, synaptophysin, parathyroid hormone, and insulinoma-associated protein 1(INSM1) was used. Expression of lncRNAs including metastasis-associated lung adenocarcinoma transcript one (MALAT1), HOX transcript antisense intergenic RNA (HOTAIR), and long intergenic non-protein coding regulator of reprograming (Linc-ROR or ROR) was also analyzed by in situ hybridization and RT-PCR. All of the parathyroid tissues were positive for parathyroid hormone, while most cases were positive for chromogranin A (98%). Synaptophysin was expressed in only 12 cases (11%) and INMS1 was negative in all cases. ROR was significantly downregulated during progression from normal, hyperplastic, and adenomatous parathyroid to parathyroid carcinomas. These results show that parathyroid hormone and chromogranin A are useful markers for parathyroid neoplasms, while synaptophysin and INSM1 are not very sensitive broad-spectrum markers for these neoplasms. LincRNA ROR may function as a tumor suppressor during parathyroid tumor progression.
J Wildl Dis
2019 May 20
Forzán MJ, Renshaw RW, Bunting EM, Buckles E, Okoniewski J, Hynes K, Laverack M, Fadden M, Dastjerdi A, Schuler K, Dubovi EJ.
PMID: 31107635 | DOI: 10.7589/2019-01-015
Epizootic mortalities in American Crows (Corvus brachyrhynchos) during the winter months, referred to as winter mortality of crows, have been recorded in North America for almost two decades. The most common postmortem findings include necrotizing enteritis, colitis, and fibrinous splenic necrosis. These findings are proposed to be due to infection with a Reovirus sp. Our objectives were to characterize the pathology and seasonality of the epizootics in New York State (NYS), confirm the causative role of an Orthoreovirus sp., and determine its phylogeny. On the basis of our proposed case definition for reovirosis, we examined case data collected by the NYS Wildlife Health Program for 16 yr. A total of 558 cases of reovirosis were recorded between 2001 and 2017. Reovirosis had a clear seasonal presentation: cases occurred almost exclusively in winter months (71% in December–January). Detailed data from a 2-yr period (2016 and 2017) demonstrated that reovirosis caused up to 70% of all recorded crow deaths during epizootic months. Crows with positive orthoreovirus isolation from the spleen or intestine were 32 times more likely to die with characteristic histologic lesions of enteritis or enterocolitis and splenic necrosis than crows with negative isolation results. An in situ hybridization probe specific to virus isolated from NYS crow reovirosis cases demonstrated a direct association between viral presence and characteristic histologic lesions. Sigma C (capsid protein) sequences of isolates from NYS crows showed high homology with Tvärminne avian virus, recently proposed as a novel Corvus orthoreovirus clade, and only distantly related to the avian orthoreovirus clade. Our study indicated that a novel orthoreovirus was the cause of winter mortality (or reovirosis) of American Crows and placed the NYS isolates in the newly proposed genus of Corvid orthoreovirus.
Am J Clin Pathol
2019 May 20
Nasir A, Lehrke HD, Mounajjed T, Said S, Zhang L, Yasir S, Shah SS, Chandan VS, Smyrk TC, Moreira RK, Boland Froemming JM, Herrera Hernandez LP, Wu TT, Graham RP.
PMID: 31107526 | DOI: 10.1093/ajcp/aqz032
Albumin messenger RNA (mRNA) expression is a marker of hepatocellular differentiation. Most published data are from review of tissue microarrays, and albumin in situ hybridization (ISH) expression across several tumor types is incompletely characterized.
Sections from 221 tumors were evaluated for albumin mRNA. Immunohistochemistry was used to confirm diagnoses. Albumin ISH was performed according to manufacturer-provided instructions. Fifty-nine cases were evaluated with both commercial ISH assays.
Albumin mRNA was detected in all hepatocellular carcinomas (HCCs) and 81% of intrahepatic cholangiocarcinomas. Lung (20%), gallbladder (39%), hepatoid pancreatic (n = 1 of 1) adenocarcinoma, breast invasive ductal carcinoma (18%), yolk sac tumor (25%), and acinar cell carcinoma (29%) showed expression. Both assays were concordant in 93% of cases.
Albumin ISH was expressed in all HCCs studied. It was also positive in intrahepatic cholangiocarcinoma and patchy positive in gallbladder adenocarcinoma and a subset of other neoplasms, which can be a potential pitfall
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com