J Fish Dis.
2019 Apr 10
Bjørgen H, Haldorsen R, Oaland Ø, Kvellestad A, Kannimuthu D, Rimstad E, Koppang EO.
PMID: 30972792 | DOI: 10.1111/jfd.12995
Melanized focal changes in skeletal muscle of farmed Atlantic salmon (Salmo salar) are a major quality problem. The aetiology is unknown, but infection with Piscine orthoreovirus (PRV) has been associated with the condition. Here, we addressed the pathogenesis of red and melanized focal changes and their association with PRV. First, a population of farmed fish (PRV-negative prior to sea transfer) was sequentially investigated throughout the seawater period. The fish were autopsied and tested for PRV infection. Muscular changes were described by macroscopy and histology, and a classification system was established. Second, in an experimental infection trial, PRV was injected intramuscularly to induce changes. The farmed fish was gradually infected with PRV. Red focal changes occurred throughout the observation period with a low prevalence regardless of PRV status. Melanized changes were highly diverse and their prevalence increased during the trial. Changes of low macroscopic grade and histological category were more prevalent in PRV-negative fish. Diffuse granulomatous melanized changes only occurred after PRV infection. No muscular changes were observed in the experimentally challenged fish. Our studies do not indicate that PRV infection causes red focal changes, but seems important in the development of granulomatous melanized changes.
Biochem Biophys Res Commun.
2019 Apr 10
Kim J, Sun S, Lee D, Youk H, Yang H.
PMID: 30981497 | DOI: 10.1016/j.bbrc.2019.04.008
NUCB2/nesfatin-1 is expressed in the hypothalamus and regulates food intake and energy metabolism. Recent studies showed that NUCB2/nesfatin-1 also plays a role in other organs. However, its expression pattern and function in female reproductive organs are unclear. Therefore, we investigated NUCB2/nesfatin-1 expression in the ovary and uterus of mice and determined whether it is regulated by gonadotropins and sex steroid hormones. NUCB2 mRNA and nesfatin-1 protein were detected in the ovary and uterus of mice. NUCB2/nesfatin-1 expression in both organs was highest in the estrus period of the estrus cycle. Administration of pregnant mare serum gonadotropin (PMSG) dose-dependently increased mRNA expression of NUCB2 in the ovary and uterus of mice. On the other hand, mRNA expression of NUCB2 in the uterus was dramatically decreased after ovariectomy and was not increased upon administration of PMSG. Injection of 17β-estradiol upregulated mRNA expression of NUCB2 in the uterus of ovariectomized mice, whereas injection of progesterone did not. These results suggest that NUCB2/nesfatin-1 expression in the ovary and uterus of mice is regulated through the hypothalamus-pituitary-ovary axis and that NUCB2/nesfatin-1 is a local regulator of ovarian steroidogenesis and uterine function.
Reproductive and Developmental Medicine
2019 Apr 11
Dai YB, Lin Y, Song N, Sun F.
PMID: - | DOI: 10.4103/2096-2924.255985
Objective: Spermatogenesis is a complex process which is of vital importance for sexual reproduction. In many studies of spermatogenesis, the mRNAs, protein-coding genes, as well as small noncoding RNAs (ncRNAs) have been well characterized. However, there remain numerous questions despite previously characterized molecular mechanisms. Long ncRNAs (lncRNAs) are a relatively new addition to our knowledge of ncRNAs. Limited studies have examined the function of lncRNAs in spermatogenesis. Therefore, we selected a testis-specific lncRNA, lncRNA4667, to analyze its potential role in spermatogenesis and male fertility.
Methods: In situ hybridization and quantitative reverse transcription polymerase chain reaction analyses were used to confirm testis-specific expression of lncRNA4667. LncRNA4667 knockout mice were generated using CRISPR/Cas9 technology. Histology, sperm counts, sperm motility, body parameters, and fertility were compared between wild-type and knockout mice (n = 8/group).
Results: Expression analysis showed that lncRNA4667 was testis specific and localized to round spermatids in seminiferous tubules of adult mouse testes. Mice homozygous for a null mutation of lncRNA4667 displayed normal spermatogenesis and fertility compared with wild-type mice.
Conclusions: These data indicate that lncRNA4667 is dispensable for spermatogenesis and fertility in mice, and the localization of lncRNA4667 makes it a useful marker for the identification of round spermatids in mice.
J Neurophysiol.
2019 Apr 10
Hatta A, Kurose M, Sullivan C, Okamoto K, Fujii N, Yamamura K, Meng ID.
PMID: 30969886 | DOI: 10.1152/jn.00126.2018
Corneal cool cells are sensitive to the ocular fluid status of the corneal surface and may be responsible for the regulation of basal tear production. Previously, we have shown that dry eye, induced by lacrimal gland excision (LGE) in rats, sensitized corneal cool cells to the TRPM8 agonist menthol and to cool stimulation. In the present study, we examined the effect of dry eye on the sensitivity of cool cells to the TRPV1 agonist capsaicin. Single-unit recordings in the trigeminal ganglion were performed 7-10 days after LGE. At a concentration of 0.3mM, capsaicin did not affect ongoing or cool-evoked activity in control animals yet facilitated ongoing activity and suppressed cool-evoked activity in LGE animals. At higher concentrations (3 mM), capsaicin continued to facilitate ongoing activity in LGE animals but suppressed ongoing activity in control animals. Higher concentrations of capsaicin also suppressed cool-evoked activity in both groups of animals, with an overall greater effect in LGE animals. In addition to altering cool-evoked activity, capsaicin enhanced the sensitivity of cool cells to heat in LGE animals. Capsaicin-induced changes were prevented by the application of the TRPV1 antagonist capsazepine. Using fluorescent in situ hybridization, TRPV1 and TRPM8 expression was examined in retrograde tracer identified corneal neurons. The co-expression of TRPV1 and TRPM8 in corneal neurons was significantly greater in LGE treated animals when compared to sham controls. These results indicate that LGE-induced dry eye increases TRPV1-mediated responses in corneal cool cells at least in part through the increased expression of TRPV1.
Cell Stem Cell.
2019 Mar 26
Wei X, Zhang L, Zhou Z, Kwon OJ, Zhang Y, Nguyen H, Dumpit R, True L, Nelson P, Dong B, Xue W, Birchmeier W, Taketo MM, Xu F, Creighton CJ, Ittmann MM, Xin L.
PMID: 30982770 | DOI: 10.1016/j.stem.2019.03.010
Cell-autonomous Wnt signaling has well-characterized functions in controlling stem cell activity, including in the prostate. While niche cells secrete Wnt ligands, the effects of Wnt signaling in niche cells per se are less understood. Here, we show that stromal cells in the proximal prostatic duct near the urethra, a mouse prostate stem cell niche, not only produce multiple Wnt ligands but also exhibit strong Wnt/β-catenin activity. The non-canonical Wnt ligand Wnt5a, secreted by proximal stromal cells, directly inhibits proliefration of prostate epithelial stem or progenitor cells whereas stromal cell-autonomous canonical Wnt/β-catenin signaling indirectly suppresses prostate stem or progenitor activity via the transforming growth factor β (TGFβ) pathway. Collectively, these pathways restrain the proliferative potential of epithelial cells in the proximal prostatic ducts. Human prostate likewise exhibits spatially restricted distribution of stromal Wnt/β-catenin activity, suggesting a conserved mechanism for tissue patterning. Thus, this study shows how distinct stromal signaling mechanisms within the prostate cooperate to regulate tissue homeostasis.
J Neurosci.
2019 Apr 10
Mackay JP, Bompolaki M, DeJoseph MR, Michaelson SD, Urban JH, Colmers WF.
PMID: 30971438 | DOI: 10.1523/JNEUROSCI.2226-18.2019
Although neuropeptide Y (NPY) has potent anxiolytic actions within the basolateral amygdala (BLA), selective activation of BLA NPY Y2receptors (Y2R) acutely increases anxiety by an unknown mechanism. Using ex vivo male rat brain slice electrophysiology, we show that the selective Y2R agonist, [ahx5-24]NPY, reduced the frequency of GABAA-mediated miniature inhibitory post synaptic currents (mIPSC) in BLA principal neurons (PN). [ahx5-24]NPY also reduced tonic activation of GABAB receptors (GABABR), which increased PN excitability through inhibition of a tonic, inwardly-rectifying potassium current (KIR ). Surprisingly, Y2R-sensitive GABABR currents were action potential-independent, persisting after treatment with tetrodotoxin. Additionally, the Ca2+-dependent, slow afterhyperpolarizing K+ current (IsAHP ) was enhanced in roughly half of the Y2R-sensitive PNs, possibly from enhanced Ca2+ influx, permitted by reduced GABABR tone. In male and female mice expressing tdTomato in Y2R-expressing cells (tdT-Y2R mice), immunohistochemistry revealed that BLA somatostatin interneurons (SST IN) express Y2Rs, as do a significant subset of BLA PNs. In tdT-Y2R mice, [ahx5-24]NPY increased excitability and suppressed the KIR in nearly all BLA PNs independent of tdT-Y2R fluorescence, consistent with presynaptic Y2Rs on SST INs mediating the above effects. However, only tdT-Y2R-expressing PNs responded to [ahx5-24]NPY with an enhancement of the IsAHP Ultimately, increased PN excitability via acute Y2R activation likely correlates with enhanced BLA output, consistent with reported Y2R-mediated anxiogenesis. Furthermore, we demonstrate: 1) a novel mechanism whereby activity-independent GABA release can powerfully dampen BLA neuronal excitability via postsynaptic GABABRs, and 2) that this tonic inhibition can be interrupted by neuromodulation, here by NPY via Y2Rs.SIGNIFICANCE STATEMENTWithin the basolateral amygdala (BLA), neuropeptide Y (NPY) is potently anxiolytic. However, selective activation of NPY2-receptors (Y2R) increases anxiety by an unknown mechanism. We show that activation of BLA Y2Rs decreases tonic GABA release onto BLA principal neurons (PN), probably from Y2R-expressing somatostatin interneurons some of which co-express NPY. This increases PN excitability by reducing GABAB receptor (GABABR)-mediated activation of G-protein-coupled, inwardly-rectifying K+(GIRK) currents. Tonic, Y2R- sensitive GABABR currents unexpectedly persisted in the absence of action potential firing, revealing, to our knowledge, the first report of substantial, activity-independent GABABR activation. Ultimately, we provide a plausible explanation for Y2R-mediated anxiogenesis in vivo and describe a novel and modulatable means of damping neuronal excitability.
PLoS One.
2019 Apr 15
Duncan DJ, Scott M, Scorer P, Barker C.
PMID: 30986253 | DOI: 10.1371/journal.pone.0215393
Four immunohistochemistry (IHC) diagnostic assays have been approved for tumour PD-L1 protein assessment in the clinic. However, mRNA detection by in situ hybridisation (ISH) could be utilised as an alternative to protein detection. Detecting spatial changes in gene expression provides vital prognostic and diagnostic information, particularly in immune oncology where the phenotype, cellular infiltration and immune activity status may be associated with patient survival. Translation of mRNA expression to a clinically relevant cut off or threshold is challenging due to variability between assays and the detection of different analytes. These studies aim to confirm the suitability of formalin fixed paraffin embedded (FFPE) tissue sections for use with RNA ISH. A comparison of mRNA expression and protein expression may inform the suitability of mRNA as a patient selection biomarker in a similar manner to IHC and provide evidence of a suitable scoring algorithm. Ninety patient samples, thirty for each indication of non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC) and urothelial carcinoma (UC), previously assessed using the VENTANA PD-L1 (SP263) Assay were chosen to represent a wide dynamic range of percentage tumour cell staining (TCIHC). Expression of mRNA was assessed by ISH using the RNAScope 2.5 assay and probe CD274/PD-L1 (Advanced Cell Diagnostics) including kit provided positive and negative control probes. Brightfield whole slide images of tissues were captured. The percentage of tumour cells with PD-L1 mRNA expression (%TCmRNA) and mean punctate dots/tumour cell were determined using image analysis. Differences in RNA expression between the IHC derived TCIHC≥25% and <25% groups were assessed using t-tests. For each indication, a receiver-operating characteristic (ROC) analysis identified thresholds for patient classification using %TCmRNA and dots/tumour cell, with reference to TCIHC≥25%. Eighty-six samples were successfully tested; 3 failed due to insufficient control probe staining, 1 due to lack of tumour. Percent TCmRNA staining using RNAScope demonstrated statistical significance (at α = 0.05) in the PD-L1 high (TCIHC ≥25%) vs the PD-L1 low (TCIHC <25%) groups for NSCLC, HNSCC, and UC. The number of punctate dots/tumour cell was significantly higher in the PD-L1 high vs the PD-L1 low groups for NSCLC and HNSCC but not UC. For %TCmRNA; ROC analysis identified thresholds of: NSCLC 18.0%, HNSCC 31.8%, UC 25.8%. For dots/tumour cell, thresholds were: NSCLC 0.26, HNSCC 0.53, UC 0.45. Routine tissue fixation and processing is suitable for RNA detection using RNAScope. PD-L1 mRNA extent and level is associated with PD-L1 status determined by IHC. Threshold optimisation for %TCmRNA and mean dots/tumour cell results in high specificity to IHC PD-L1 classification, but only moderate sensitivity.
Pharmaceuticals
2019 Mar 26
Ganguly D, Cai C, Sims MM, Yang CH, Thomas M, Cheng J, Saad AG, Pfeffer LM.
PMID: 30917521 | DOI: 10.3390/ph12010045
Glioblastoma (GBM) is the most common and deadliest primary adult brain tumor. Invasion, resistance to therapy, and tumor recurrence in GBM can be attributed in part to brain tumor-initiating cells (BTICs). BTICs isolated from various patient-derived xenografts showed high expression of the poorly characterized Apelin early ligand A (APELA) gene. Although originally considered to be a non-coding gene, the APELA gene encodes a protein that binds to the Apelin receptor and promotes the growth of human embryonic stem cells and the formation of the embryonic vasculature. We found that both APELA mRNA and protein are expressed at high levels in a subset of brain tumor patients, and that APELA is also expressed in putative stem cell niche in GBM tumor tissue. Analysis of APELA and the Apelin receptor gene expression in brain tumor datasets showed that high APELA expression was associated with poor patient survival in both glioma and glioblastoma, and APELA expression correlated with glioma grade. In contrast, gene expression of the Apelin receptor or Apelin was not found to be associated with patient survival, or glioma grade. Consequently, APELA may play an important role in glioblastoma tumorigenesis and may be a future therapeutic target.
Int J Mol Med.
2019 Mar 20
Tanaka S, Honda Y, Takaku S, Koike T, Oe S, Hirahara Y, Yoshida T, Takizawa N, Takamori Y, Kurokawa K, Kodama T, Yamada H.
PMID: 30896835 | DOI: 10.3892/ijmm.2019.4143
The hypocretin/orexin neuropeptide system coordinates the regulation of various physiological processes. Our previous study reported that a reduction in the expression of pleomorphic adenoma gene‑like 1 (Plagl1), which encodes a C2H2 zinc‑finger transcription factor, occurs in hypocretin neuron‑ablated transgenic mice, suggesting that PLAGL1 is co‑expressed in hypocretin neurons and regulates hypocretin transcription. The present study examined whether canonical prepro‑hypocretin transcription is functionally modulated by PLAGL1. Double immunostaining indicated that the majority of hypocretin neurons were positive for PLAGL1 immunoreactivity in the nucleus. Notably, PLAGL1 immunoreactivity in hypocretin neurons was altered in response to several conditions affecting hypocretin function. An uneven localization of PLAGL1 was detected in the nuclei of hypocretin neurons following sleep deprivation. Chromatin immunoprecipitation revealed that endogenous PLAGL1 may bind to a putative PLAGL1‑binding site in the proximal region of the hypocretin gene, in the murine hypothalamus. In addition, electroporation of the PLAGL1 expression vector into the fetal hypothalamus promoted hypothalamic hypocretin transcription. These results suggested that PLAGL1 may regulate hypothalamic hypocretin transcription.
Cell Rep.
2019 Apr 16
Kiyama T, Long Y, Chen CK, Whitaker CM, Shay A, Wu H, Badea TC, Mohsenin A, Parker-Thornburg J, Klein WH, Mills SL, Massey SC, Mao CA.
PMID: 30995485 | DOI: 10.1016/j.celrep.2019.03.077
In the mouse retina, more than 30 retinal ganglion cell (RGC) subtypes have been classified based on a combined metric of morphological and functional characteristics. RGCs arise from a common pool of retinal progenitor cells during embryonic stages and differentiate into mature subtypes in adult retinas. However, the cellular and molecular mechanisms controlling formation and maturation of such remarkable cellular diversity remain unknown. Here, we demonstrate that T-box transcription factor T-brain 1 (Tbr1) is expressed in two groups of morphologically and functionally distinct RGCs: the orientation-selective J-RGCs and a group of OFF-sustained RGCs with symmetrical dendritic arbors. When Tbr1 is genetically ablated during retinal development, these two RGC groups cannot develop. Ectopically expressing Tbr1 in M4 ipRGCs during development alters dendritic branching and density but not the inner plexiform layer stratification level. Our data indicate that Tbr1 plays critical roles in regulating the formation and dendritic morphogenesis of specific RGC types.
Cell Rep.
2019 Apr 16
Han Y, Mora J, Huard A, da Silva P, Wiechmann S, Putyrski M, Schuster C, Elwakeel E, Lang G, Scholz A, Scholz T, Schmid T, de Bruin N, Billuart P, Sala C, Burkhardt H, Parnham MJ, Ernst A, Brüne B, Weigert A.
PMID: 30995480 | DOI: 10.1016/j.celrep.2019.03.082
Interleukin-38 (IL-38) is a cytokine of the IL-1 family with a role in chronic inflammation. However, its main cellular targets and receptors remain obscure. IL-38 is highly expressed in the skin and downregulated in psoriasis patients. We report an investigation in cellular targets of IL-38 during the progression of imiquimod-induced psoriasis. In this model, IL-38 knockout (IL-38 KO) mice show delayed disease resolution with exacerbated IL-17-mediated inflammation, which is reversed by the administration of mature IL-38 or γδ T cell-receptor-blocking antibodies. Mechanistically, X-linked IL-1 receptor accessory protein-like 1 (IL1RAPL1) is upregulated upon γδ T cell activation to feedforward-amplify IL-17 production and is required for IL-38 to suppress γδ T cell IL-17 production. Accordingly, psoriatic IL1RAPL1 KO mice show reduced inflammation and IL-17 production by γδ T cells. Our findings indicate a role for IL-38 in the regulation of γδ T cell activation through IL1RAPL1, with consequences for auto-inflammatory disease.
Int J Mol Sci.
2019 Apr 17
Møller T, James JP, Holmstrøm K, Sørensen FB, Lindebjerg J, Nielsen BS.
PMID: 30999696 | DOI: 10.3390/ijms20081907
MicroRNA-21 (miR-21) is upregulated in many cancers including colon cancers and is a prognostic indicator of recurrence and poor prognosis. In colon cancers, miR-21 is highly expressed in stromal fibroblastic cells and more weakly in a subset of cancer cells, particularly budding cancer cells. Exploration of the expression of inflammatory markers in colon cancers revealed tumor necrosis factor alpha (TNF-α) mRNA expression at the invasive front of colon cancers. Surprisingly, a majority of the TNF-α mRNA expressing cells were found to be cancer cells and not inflammatory cells. Because miR-21 is positively involved in cell survival and TNF-α promotes necrosis, we found it interesting to analyze the presence of miR-21 in areas of TNF-α mRNA expression at the invasive front of colon cancers. For this purpose, we developed an automated procedure for the co-staining of miR-21, TNF-α mRNA and the cancer cell marker cytokeratin based on analysis of frozen colon cancer tissue samples (n = 4) with evident cancer cell budding. In all four cases, TNF-α mRNA was seen in a small subset of cancer cells at the invasive front. Evaluation of miR-21 and TNF-α mRNA expression was performed on digital slides obtained by confocal slide scanning microscopy. Both co-expression and lack of co-expression with miR-21 in the budding cancer cells was noted, suggesting non-correlated expression. miR-21 was more often seen in cancer cells than TNF-α mRNA. In conclusion, we report that miR-21 is not linked to expression of the pro-inflammatory cytokine TNF-α mRNA, but that miR-21 and TNF-α both take part in the cancer expansion at the invasive front of colon cancers. We hypothesize that miR-21 may protect both fibroblasts and cancer cells from cell death directed by TNF-α paracrine and autocrine activity.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com