J Neurosci.
2019 Mar 12
Liu SS, Pickens S, Burma NE, Ibarra-Lecue I, Yang H, Xue L, Cook C, Hakimian JK, Severino AL, Lueptow L, Komarek K, Taylor AMW, Olmstead MC, Carroll FI, Bass CE, Andrews AM, Walwyn W, Trang T, Evans CJ, Leslie F, Cahill CM.
PMID: 30862664 | DOI: 10.1523/JNEUROSCI.0274-19.2019
Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the kappa opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative RT-PCR, florescence in situ hybridization, western blotting and GTPgS autoradiography an upregulation of expression and the function of kappa opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared to surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.Significance StatementWe show that KORs are sufficient to drive the tonic-aversive component of chronic pain - the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high co-morbidity with chronic pain) and substance abuse. Indeed, co-existing psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).
Cell Rep.
2019 Mar 12
Veerman K, Tardiveau C, Martins F, Coudert J, Girard JP.
PMID: 30865898 | DOI: 10.1016/j.celrep.2019.02.042
High-endothelial venules (HEVs) are specialized blood vessels allowing recirculation of naive lymphocytes through lymphoid organs. Here, using full-length, single-cell RNA sequencing, RNA fluorescence in situ hybridization (FISH), flow cytometry, and immunohistofluorescence, we reveal the heterogeneity of HEVs in adult mouse peripheral lymph nodes (PLNs) under conditions of homeostasis, antigenic stimulation, and after inhibition of lymphotoxin-β receptor (LTβR) signaling. We demonstrate that HEV endothelial cells are in an activated state during homeostasis, and we identify the genes characteristic of the differentiated HEV phenotype. We show that LTβR signaling regulates many HEV genes and pathways in resting PLNs and that immune stimulation induces a global and temporary inflammatory phenotype in HEVs without compromising their ability to recruit naive lymphocytes. Most importantly, we uncover differences in the regulation of genes controlling lymphocyte trafficking, Glycam1, Fut7, Gcnt1, Chst4, B3gnt3, and Ccl21a, that have implications for HEV function and regulation in health and disease.
Nat Neurosci.
2019 Mar 11
Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC.
PMID: 30858605 | DOI: 10.1038/s41593-019-0349-8
The lateral hypothalamic area (LHA) coordinates an array of fundamental behaviors, including sleeping, waking, feeding, stress and motivated behavior. The wide spectrum of functions ascribed to the LHA may be explained by a heterogeneous population of neurons, the full diversity of which is poorly understood. We employed a droplet-based single-cell RNA-sequencing approach to develop a comprehensive census of molecularly distinct cell types in the mouse LHA. Neuronal populations were classified based on fast neurotransmitter phenotype and expression of neuropeptides, transcription factors and synaptic proteins, among other gene categories. We define 15 distinct populations of glutamatergic neurons and 15 of GABAergic neurons, including known and novel cell types. We further characterize a novel population of somatostatin-expressing neurons through anatomical and behavioral approaches, identifying a role for these neurons in specific forms of innate locomotor behavior. This study lays the groundwork for better understanding the circuit-level underpinnings of LHA function.
Sci Rep.
2019 Mar 11
Sengupta S, Giaime E, Narayan S, Hahm S, Howell J, O'Neill D, Vlasuk GP, Saiah E.
PMID: 30858438 | DOI: 10.1038/s41598-019-40693-5
The mechanistic target of rapamycin complex 1 (mTORC1) has been linked to several important chronic medical conditions many of which are associated with advancing age. A variety of inputs including the amino acid leucine are required for full mTORC1 activation. The cytoplasmic proteins Sestrin1 and Sestrin2 specifically bind to the multiprotein complex GATOR2 and communicate leucine sufficiency to the mTORC1 pathway activation complex. Herein, we report NV-5138, a novel orally bioavailable compound that binds to Sestrin2 and activates mTORC1 both in vitro and in vivo. NV-5138 like leucine transiently activates mTORC1 in several peripheral tissues, but in contrast to leucine uniquely activates this complex in the brain due lack of metabolism and utilization in protein synthesis. As such, NV-5138 will permit the exploration in areas of unmet medical need including neuropsychiatric conditions and cognition which have been linked to the activationstatus of mTORC1.
Biol Reprod
2019 Mar 27
Ju M, Yang L, Zhu J, Chen Z, Zhang M, Yu J and Tian Z
PMID: 30916745 | DOI: 10.1093/biolre/ioz044
Exp Eye Res
2019 Mar 24
Lyu J, Wang Y, Zheng Q, Hua P, Zhu X, Li J, Li J, Ji X and Zhao P
PMID: 30917906 | DOI: 10.1016/j.exer.2019.03.017
Gastroenterology
2019 Mar 28
Chandrasekharan B, Saeedi BJ, Alam A, Houser M, Srinivasan S, Tansey M, Jones R, Nusrat A and Neish AS
| DOI: 10.1053/j.gastro.2019.03.045
Cancer Cell
2019 Mar 28
Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, Fidanza A, Lopez-Yrigoyen M, Millar MR, Urman A, Ai Z, Spellman PT, Hwang ES, Dixon JM, Wiechmann L, Coussens LM, Smith HO and Pollard JW
| DOI: 10.1016/j.ccell.2019.02.009
Cell Stem Cell
2019 Mar 28
Wang ECE, Dai Z, Ferrante AW, Drake CG and Christiano AM
| DOI: 10.1016/j.stem.2019.01.011
Neuron
2019 Mar 19
Mandelbaum G, Taranda J, Haynes TM, Hochbaum DR, Huang KW, Hyun M, Umadevi Venkataraju K, Straub C, Wang W, Robertson K, Osten P and Sabatini BL
PMID: 30905392 | DOI: 10.1016/j.neuron.2019.02.035
Sci Rep
2019 Mar 25
Bradaschia-Correa V, Leclerc K, Josephson AM, Lee S, Palma L, Litwa HP, Neibart SS, Huo JC and Leucht P
PMID: 30911091 | DOI: 10.1038/s41598-019-41639-7
Nature Metabolism
2019 Mar 25
Morgantini C, Jager J, Li X, Levi L, Azzimato V, Sulen A, Barreby E, Xu C, Tencerova M, Näslund E, Kumar C, Verdeguer F, Straniero S, Hultenby K, Björkström NK, Ellis E, Rydén M, Kutter C, Hurrell T, Lauschke VM, Boucher J, Tomčala A, Krejčová G, Bajgar A and Aouadi M
| DOI: 10.1038/s42255-019-0044-9
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com