Science. 2018 Dec 14;362(6420).
Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, Won H, van Bakel H, Varghese M, Wang Y, Shieh AW, Haney J, Parhami S, Belmont J, Kim M, Moran Losada P, Khan Z, Mleczko J1, Xia Y, Dai R, Wang D, Yang YT, Xu M, Fish K, Hof PR, Warrell J, Fitzgerald D, White K, Jaffe AE; PsychENCODE Consortium, Peters MA, Gerstein M, Liu C, Iakoucheva LM, Pinto D, Geschwind DH.
PMID: 30545856 | DOI: 10.1126/science.aat8127
Most genetic risk for psychiatric disease lies in regulatory regions, implicating pathogenic dysregulation of gene expression and splicing. However, comprehensive assessments of transcriptomic organization in diseased brains are limited. In this work, we integrated genotypes and RNA sequencing in brain samples from 1695 individuals with autism spectrum disorder (ASD), schizophrenia, and bipolar disorder, as well as controls. More than 25% of the transcriptome exhibits differential splicing or expression, with isoform-level changes capturing the largest disease effects and genetic enrichments. Coexpression networks isolate disease-specific neuronal alterations, as well as microglial, astrocyte, and interferon-response modules defining previously unidentified neural-immune mechanisms. We integrated genetic and genomic data to perform a transcriptome-wide association study, prioritizing disease loci likely mediated by cis effects on brain expression. This transcriptome-wide characterization of the molecular pathology across three major psychiatric disorders provides a comprehensive resource for mechanistic insight and therapeutic development.
Inflamm Bowel Dis. 2017 Nov;23(11):1950-1961.
Shouval DS, Konnikova L, Griffith AE, Wall SM, Biswas A, Werner L, Nunberg M, Kammermeier J, Goettel JA, Anand R, Chen H, Weiss B, Li J, Loizides A, Yerushalmi B, Yanagi T, Beier R, Conklin LS, Ebens CL, Santos FGMS, Sherlock M, Goldsmith JD, Kotlarz D, Glover SC, Shah N, Bousvaros A, Uhlig HH, Muise AM, Klein C, Snapper SB.
PMID: 29023267 | DOI: 10.1097/MIB.0000000000001270
Abstract BACKGROUND: IL10 receptor (IL10R) deficiency causes severe infantile-onset inflammatory bowel disease. Intact IL10R-dependent signals have been shown to be important for innate and adaptive immune cell functions in mice. We have previously reported a key role of IL10 in the generation and function of human anti-inflammatory macrophages. Independent of innate immune cell defects, the aim of the current study was to determine the role of IL10R signaling in regulating human CD4 T-cell function. METHODS: Peripheral blood mononuclear cells and intestinal biopsies cells were collected from IL10/IL10R-deficient patients and controls. Frequencies of CD4 T-cell subsets, naive T-cell proliferation, regulatory T cell (Treg)-mediated suppression, and Treg and TH17 generation were determined by flow cytometry. Transcriptional profiling was performed by NanoString and quantitative real-time polymerase chain reaction. RNA in situ hybridization was used to determine the quantities of various transcripts in intestinal mucosa. RESULTS: Analysis of 16 IL10- and IL10R-deficient patients demonstrated similar frequencies of peripheral blood and intestinal Tregs, compared with control subjects. In addition, in vitro Treg suppression of CD4 T-cell proliferation and generation of Treg were not dependent on IL10R signaling. However, IL10R-deficient T naive cells exhibited higher proliferative capacity, a strong TH17 signature, and an increase in polarization toward TH17 cells, compared with controls. Moreover, the frequency of TH17 cells was increased in the colon and ileum of IL10R-deficient patients. Finally, we show that stimulation of IL10R-deficient Tregs in the presence of IL1β leads to enhanced production of IL17A. CONCLUSIONS: IL10R signaling regulates TH17 polarization and T-cell proliferation in humans but is not required for the generation and in vitro suppression of Tregs. Therapies targeting the TH17 axis might be beneficial for IL10- and IL10R-deficient patients as a bridge to allogeneic hematopoietic stem cell transplantation.
Cell Stem Cell. 2018 Dec 11.
Kitadate Y, Jörg DJ, Tokue M, Maruyama A, Ichikawa R, Tsuchiya S, Segi-Nishida E, Nakagawa T, Uchida A, Kimura-Yoshida C, Mizuno S, Sugiyama F, Azami T, Ema M, Noda C, Kobayashi S, Matsuo I, Kanai Y, Nagasawa T, Sugimoto Y, Takahashi S, Simons BD, Yoshida S.
PMID: 30581080 | DOI: 10.1016/j.stem.2018.11.013
In many tissues, homeostasis is maintained by physical contact between stem cells and an anatomically defined niche. However, how stem cell homeostasis is achieved in environments where cells are motile and dispersed among their progeny remains unknown. Using murine spermatogenesis as a model, we find that spermatogenic stem cell density is tightly regulated by the supply of fibroblast growth factors (FGFs) from lymphatic endothelial cells. We propose that stem cell homeostasis is achieved through competition for a limited supply of FGFs. We show that the quantitative dependence of stem cell density on FGF dosage, the biased localization of stem cells toward FGF sources, and stem cell dynamics during regeneration following injury can all be predicted and explained within the framework of a minimal theoretical model based on "mitogen competition." We propose that this model provides a generic and robust mechanism to support stem cell homeostasis in open, or facultative, niche environments.
Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, Gulati G, Bennett ML, Sun LO, Clarke LE, Marschallinger J, Yu G, Quake SR, Wyss-Coray T, Barres BA.
| DOI: 10.1016/j.neuron.2018.12.006
Microglia are increasingly recognized for their major contributions during brain development and neurodegenerative disease. It is currently unknown whether these functions are carried out by subsets of microglia during different stages of development and adulthood or within specific brain regions. Here, we performed deep single-cell RNA sequencing (scRNA-seq) of microglia and related myeloid cells sorted from various regions of embryonic, early postnatal, and adult mouse brains. We found that the majority of adult microglia expressing homeostatic genes are remarkably similar in transcriptomes, regardless of brain region. By contrast, early postnatal microglia are more heterogeneous. We discovered a proliferative-region-associated microglia (PAM) subset, mainly found in developing white matter, that shares a characteristic gene signature with degenerative disease-associated microglia (DAM). Such PAM have amoeboid morphology, are metabolically active, and phagocytose newly formed oligodendrocytes. This scRNA-seq atlas will be a valuable resource for dissecting innate immune functions in health and disease.
Mok KW, Saxena N, Heitman N, Grisanti L, Srivastava D, Muraro MJ, Jacob T, Sennett R, Wang Z, Su Y, Yang LM, Ma'ayan A, Ornitz DM, Kasper M, Rendl M.
PMID: 30595537 | DOI: 10.1016/j.devcel.2018.11.034
Cell fate transitions are essential for specification of stem cells and their niches, but the precise timing and sequence of molecular events during embryonic development are largely unknown. Here, we identify, with 3D and 4D microscopy, unclustered precursors of dermal condensates (DC), signaling niches for epithelial progenitors in hair placodes. With population-based and single-cell transcriptomics, we define a molecular time-lapse from pre-DC fate specification through DC niche formation and establish the developmental trajectory as the DC lineage emerges from fibroblasts. Co-expression of downregulated fibroblast and upregulated DC genes in niche precursors reveals a transitory molecular state following a proliferation shutdown. Waves of transcription factor and signaling molecule expression then coincide with DC formation. Finally, ablation of epidermal Wnt signaling and placode-derived FGF20 demonstrates their requirement for pre-DC specification. These findings uncover a progenitor-dependent niche precursor fate and the transitory molecular events controlling niche formation and function.
Biochem Biophys Res Commun. 2018 Dec 26.
Lu L, Zhang F, Li Y, Yang A, Guan C, Ding X, Liu Y, Liu Y, Zhang CY, Li L, Zhang Q.
PMID: 30594399 | DOI: 10.1016/j.bbrc.2018.12.137
Local translation in neurites is considered as an important mechanism to modulate synaptic plasticity of neurons. However, it is hard to specifically express a protein-coding gene in neurites. Recently, the 5'-UTR of Tick-borne encephalitis virus (TBEV) is reported to be able to drive its RNA to the dendrites of infected neurons, as a cis-acting RNA element. To construct a neurite specific gene expression system, present study tested the ability of 5'-UTR of TBEV to bring a mRNA (mCherry CDS) to the neurites for targeted expression. We showed that both the 5'-UTR of TBEV and the 3'-UTR of Actb gene could bring the protein coding mRNA to neurites, and the TBEV 5'-UTR bearing mRNA was more robust targeted into neurites. About the safety of the TBEV 5'-UTR, there was no obvious cytotoxicity to the neurons when adding either cis-acting RNA element to the protein-expressing plasmid vectors. Given the short length and high efficiency of the TBEV 5'-UTR, the 5'-UTR of TBEV were assemble into an AAV plasmid to produce virus particles for expressing protein-coding gene in vivo. After two weeks infection, the TBEV 5'-UTR infected neurons expressed more mCherry protein in their neurites. In conclusion, as a short while high efficient cis-acting RNA element, TBEV 5'-UTR could be useful in neural system research and locally express synaptic proteins more precisely.
Guo D, Zhao X, Wang A, Xie Q, Xu X, Sun J.
PMID: 30594747 | DOI: 10.1016/j.humpath.2018.10.041
The immunosuppressive effect of the programmed death (PD)-1/PD-L1 pathway plays an important role in the treatment of a variety of tumors, such as lung and breast cancer, but there is little literature about PD-1/PD-L1 in pheochromocytomas/paragangliomas (PCC/PGLs). We explored the relationship of PD-L1 and malignant behavior in 77 cases of PCC/PGL using immunohistochemistry (IHC) to assess protein expression and RNAscope to detect mRNA expression in 20 cases. The IHC data showed that 59.74% of the PCC/PGLs expressed PD-L1, and the extent of expression was highly correlated with Ki-67 (P = .019) and hypertension (P = .013), but not with age, sex, tumor size, capsular invasion, tumor necrosis, relapse/distant metastasis, secretion of noradrenaline/adrenaline/dopamine, or diabetes mellitus. In addition, we found an excellent correlation of PD-L1 mRNA and protein expression with a κ coefficient of 0.828, and further stratification of the IHC and RNAscope findings showed high consistency (Pearson's coefficient 0.753). The correlation of PD-L1 and Ki-67 indicated that PD-L1 could be considered a malignant proliferation biomarker for PCC/PGLs, which would be a putative biomarker for anti-PD-L1 therapies.
The Institute of Cancer Research (2018)
Menon M, Elliott RJ, Bowers L, Balan N, Rafiq R, Costa-Cabral S, Munkonge F, Trinidade I, Ashworth A, Lord C.
Inhibition of the PARP superfamily tankyrase enzymes suppresses Wnt/b-catenin signalling in tumour cells. Here, we describe here a novel, drug-like small molecule inhibitor of tankyrase MSC2504877 that inhibits the growth of APC mutant colorectal tumour cells. Parallel siRNA and drug sensitivity screens showed that the clinical CDK4/6 inhibitor palbociclib, causes enhanced sensitivity to MSC2504877. This tankyrase inhibitor-CDK4/6 inhibitor combinatorial effect is not limited to palbociclib and MSC2504877 and is elicited with other CDK4/6 inhibitors and toolbox tankyrase inhibitors. The addition of MSC2504877 to palbociclib enhances G1 cell cycle arrest and cellular senescence in tumour cells. MSC2504877 exposure suppresses the upregulation of Cyclin D2 and Cyclin E2 caused by palbociclib and enhances the suppression of phospho-Rb, providing a mechanistic explanation for these effects. The combination of MSC2504877 and palbociclib was also effective in suppressing the cellular hyperproliferative phenotype seen in Apc defective intestinal stem cells in vivo. However, the presence of an oncogenic Kras p.G12D mutation in mice reversed the effects of the MSC2504877/palbociclib combination, suggesting one molecular route that could lead to drug resistance.
Bao L, Rodiger J, Park S, Fu L, Shi B, Cheng SY, Shi YB.
PMID: 30595106 | DOI: 10.1089/thy.2018.0340
Abstract BACKGROUND: Thyroid hormone (T3) is critical for vertebrate development and affects the function of many adult tissues and organs. Its genomic effects are mediated by thyroid hormone nuclear receptors (TRs) present in all vertebrates. The discovery of patients with resistance to thyroid hormone (RTHβ) over 50 years ago and subsequent identification of the genetic mutations only in the THRB gene in these patients suggest that mutations in the THRA gene may have different pathological manifestations in humans. Indeed, the recent discovery of a number of human patients carrying heterozygous mutations in the THRA gene (RTHα) revealed a distinct phenotype that was not observed in the RTH patients with THRB gene mutations (RTHβ). That is, the RTHα patients had constipations, implicating intestinal defects caused by THRA gene mutations. METHODS: To determine how TRα1 mutations affect intestine, we have analyzed a mutant mouse expressing a strong dominantly negative TRα1 mutant, (denoted TRα1PV; Thra1PV mice). This mutant mouse faithfully reproduces RTHα phenotypes as observed in patients. RESULTS: In adult Thra1PV/+ mice, we observed constipation just like in patients with TRα mutations. Importantly, we discovered significant intestinal defects, including shorter villi, increased differentiated cells in the crypt, accompanied by reduced stem cell proliferation in the intestine. CONCLUSION: Our findings suggest that further analysis of this mouse model should help reveal the molecular and physiological defects in the intestine caused by TRα mutations and to determine the underlying mechanisms.
Bertschi NL, Voorberg-van der Wel A, Zeeman AM, Schuierer S, Nigsch F, Carbone W, Knehr J, Gupta DK, Hofman SO, van der Werff N, Nieuwenhuis I, Klooster E, Faber BW, Flannery EL, Mikolajczak S, Shrestha B, Beibel M, Bouwmeester T, Kangwanrangsan N, Sattabongkot J, Diagana TT, Kocken CHM, Roma G.
PMID: 30589413 | DOI: 10.7554/eLife.41081
Relapses of Plasmodium dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old P. cynomolgi liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel, 2017). We now extend these findings by transcriptome profiling of 9 to 10 day-old liver stage parasites, thus revealing for the first time the maturation of the dormant stage over time. Although progression of dormancy leads to a 10-fold decrease in transcription and expression of only 840 genes, including genes associated with housekeeping functions, we show that pathways involved in quiescence, energy metabolism and maintenance of genome integrity remain the prevalent pathways active in mature hypnozoites.
Neuroscience. 2018 Dec 26.
Manohar S, Ramchander PV, Salvi R, Seigel GM.
PMID: 30593923 | DOI: 10.1016/j.neuroscience.2018.12.023
The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially-expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28 d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.
Gupta K, Levinsohn J, Linderman G, Chen D, Sun TY, Dong D, Taketo MM, Bosenberg M, Kluger Y, Choate K, Myung P.
PMID: 30595533 | DOI: 10.1016/j.devcel.2018.11.032
Delineating molecular and cellular events that precede appendage morphogenesis has been challenging due to the inability to distinguish quantitative molecular differences between cells that lack histological distinction. The hair follicle (HF) dermal condensate (DC) is a cluster of cells critical for HF development and regeneration. Events that presage emergence of this distinctive population are poorly understood. Using unbiased single-cell RNA sequencing and in vivo methods, we infer a sequence of transcriptional states through which DC cells pass that begins prior to HF morphogenesis. Our data indicate that Wnt/β-catenin signaling is required to progress into an intermediate stage that precedes quiescence and differentiation. Further, we provide evidence that quiescent DC cells are recent progeny of selectively proliferating cells present prior to morphogenesis and that are later identified in the peri-DC zone during DC expansion. Together, these findings provide an inferred path of molecular states that lead to DC cell differentiation.