Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search
  • Probes for (1571451)
  • Kits & Accessories (135)
  • Support & Documents (0)
  • Publications (7110)
  • Image gallery (0)
Refine Probe List

Content for comparison

Species

  • Mouse (320919) Apply Mouse filter
  • Human (293611) Apply Human filter
  • Other (131299) Apply Other filter
  • Rat (63465) Apply Rat filter
  • Zebrafish (54667) Apply Zebrafish filter
  • Monkey (43709) Apply Monkey filter
  • Pig (17303) Apply Pig filter
  • Dog (16085) Apply Dog filter
  • Rabbit (8222) Apply Rabbit filter
  • Felis catus (7033) Apply Felis catus filter
  • Bovine (6266) Apply Bovine filter
  • Callithrix jacchus (5027) Apply Callithrix jacchus filter
  • Ovis aries (3328) Apply Ovis aries filter
  • Anolis carolinensis (3027) Apply Anolis carolinensis filter
  • Mesocricetus auratus (3019) Apply Mesocricetus auratus filter
  • Octopus bimaculoides (2731) Apply Octopus bimaculoides filter
  • Salmo salar (2711) Apply Salmo salar filter
  • Astyanax mexicanus (2665) Apply Astyanax mexicanus filter
  • Heterocephalus glaber (2596) Apply Heterocephalus glaber filter
  • Aedes aegypti (2427) Apply Aedes aegypti filter
  • Pogona vitticeps (2245) Apply Pogona vitticeps filter
  • Sorghum bicolor (1880) Apply Sorghum bicolor filter
  • Anopheles gambiae str. PEST (1759) Apply Anopheles gambiae str. PEST filter
  • Oryzias latipes (1746) Apply Oryzias latipes filter
  • Trichoplax adhaerens (1720) Apply Trichoplax adhaerens filter
  • Xenopus laevis (1534) Apply Xenopus laevis filter
  • Human papillomavirus (1523) Apply Human papillomavirus filter
  • Human herpesvirus (1465) Apply Human herpesvirus filter
  • Other virus (1461) Apply Other virus filter
  • Ixodes scapularis (1395) Apply Ixodes scapularis filter
  • Oncorhynchus mykiss (1393) Apply Oncorhynchus mykiss filter
  • Macaca nemestrina (1310) Apply Macaca nemestrina filter
  • Human immunodeficiency virus 1 (1303) Apply Human immunodeficiency virus 1 filter
  • Ginglymostoma cirratum (1163) Apply Ginglymostoma cirratum filter
  • Hepatitis B virus (1141) Apply Hepatitis B virus filter
  • Xenopus tropicalis (1138) Apply Xenopus tropicalis filter
  • Peromyscus maniculatus bairdii (1114) Apply Peromyscus maniculatus bairdii filter
  • Serinus canaria (1038) Apply Serinus canaria filter
  • Ictidomys tridecemlineatus (1028) Apply Ictidomys tridecemlineatus filter
  • Microtus ochrogaster (1024) Apply Microtus ochrogaster filter
  • Nothobranchius furzeri (1001) Apply Nothobranchius furzeri filter
  • synthetic construct (879) Apply synthetic construct filter
  • Gasterosteus aculeatus (818) Apply Gasterosteus aculeatus filter
  • Lonchura striata domestica (805) Apply Lonchura striata domestica filter
  • Hippocampus comes (768) Apply Hippocampus comes filter
  • Monodelphis domestica (694) Apply Monodelphis domestica filter
  • Rousettus aegyptiacus (639) Apply Rousettus aegyptiacus filter
  • Tupaia chinensis (617) Apply Tupaia chinensis filter
  • Anopheles gambiae (612) Apply Anopheles gambiae filter
  • Meriones unguiculatus (583) Apply Meriones unguiculatus filter

Gene

  • PPIB (2561) Apply PPIB filter
  • TBD (1462) Apply TBD filter
  • Bdnf (1374) Apply Bdnf filter
  • GAPDH (1320) Apply GAPDH filter
  • Htt (1318) Apply Htt filter
  • UBC (1313) Apply UBC filter
  • Slc17a6 (1162) Apply Slc17a6 filter
  • FOS (1149) Apply FOS filter
  • Gad1 (1096) Apply Gad1 filter
  • Il10 (1077) Apply Il10 filter
  • CD4 (1066) Apply CD4 filter
  • POLR2A (1063) Apply POLR2A filter
  • ESR1 (1025) Apply ESR1 filter
  • AR (989) Apply AR filter
  • Vegfa (885) Apply Vegfa filter
  • Tnf (884) Apply Tnf filter
  • Lgr5 (875) Apply Lgr5 filter
  • Oxtr (868) Apply Oxtr filter
  • Ifng (851) Apply Ifng filter
  • NTRK2 (846) Apply NTRK2 filter
  • Ace2 (835) Apply Ace2 filter
  • DRD2 (824) Apply DRD2 filter
  • TGFB1 (822) Apply TGFB1 filter
  • Slc17a7 (808) Apply Slc17a7 filter
  • Rbfox3 (806) Apply Rbfox3 filter
  • LEPR (804) Apply LEPR filter
  • Nrg1 (791) Apply Nrg1 filter
  • OPRM1 (786) Apply OPRM1 filter
  • GFAP (784) Apply GFAP filter
  • PDGFRA (774) Apply PDGFRA filter
  • IL6 (751) Apply IL6 filter
  • ACTB (745) Apply ACTB filter
  • Sox9 (745) Apply Sox9 filter
  • Chat (731) Apply Chat filter
  • DRD1 (730) Apply DRD1 filter
  • GLP1R (728) Apply GLP1R filter
  • NP (728) Apply NP filter
  • Cd8a (727) Apply Cd8a filter
  • PECAM1 (725) Apply PECAM1 filter
  • MAPT (723) Apply MAPT filter
  • COL1A1 (703) Apply COL1A1 filter
  • ACTA2 (701) Apply ACTA2 filter
  • CD3E (694) Apply CD3E filter
  • TRPA1 (688) Apply TRPA1 filter
  • CDKN1A (670) Apply CDKN1A filter
  • S (658) Apply S filter
  • Sst (650) Apply Sst filter
  • Piezo2 (643) Apply Piezo2 filter
  • 16SrRNA (638) Apply 16SrRNA filter
  • CD68 (615) Apply CD68 filter

Platform

  • Manual Assay RNAscope HiPlex (511449) Apply Manual Assay RNAscope HiPlex filter
  • Automated Assay for Leica Systems - RNAscope (128999) Apply Automated Assay for Leica Systems - RNAscope filter
  • Manual Assay RNAscope (70981) Apply Manual Assay RNAscope filter
  • Automated Assay for Ventana Systems - RNAscope (36105) Apply Automated Assay for Ventana Systems - RNAscope filter
  • Manual Assay BaseScope (5508) Apply Manual Assay BaseScope filter
  • Manual Assay miRNAscope (5124) Apply Manual Assay miRNAscope filter
  • Automated Assay for Leica Systems - miRNAscope (4930) Apply Automated Assay for Leica Systems - miRNAscope filter
  • Automated Assay for Leica Systems - BaseScope (4611) Apply Automated Assay for Leica Systems - BaseScope filter
  • Automated Assay for Ventana System - BaseScope (4574) Apply Automated Assay for Ventana System - BaseScope filter
  • Automated Assay for Ventana Systems - miRNAscope (4077) Apply Automated Assay for Ventana Systems - miRNAscope filter
  • Manual Assay DNAscope (227) Apply Manual Assay DNAscope filter
  • Manual Assay 2.5 (9) Apply Manual Assay 2.5 filter
  • T3 (3) Apply T3 filter
  • T4 (3) Apply T4 filter
  • T8 (3) Apply T8 filter
  • T1 (3) Apply T1 filter
  • T10 (3) Apply T10 filter
  • Manual Assay HiPlex (2) Apply Manual Assay HiPlex filter
  • T2 (2) Apply T2 filter
  • T7 (2) Apply T7 filter
  • T9 (2) Apply T9 filter
  • Automated Assay for Leica Systems (LS 2.5) (1) Apply Automated Assay for Leica Systems (LS 2.5) filter
  • T5 (1) Apply T5 filter
  • T6 (1) Apply T6 filter
  • T11 (1) Apply T11 filter
  • T12 (1) Apply T12 filter

Channel

  • 1 (158789) Apply 1 filter
  • 2 (145194) Apply 2 filter
  • 3 (93691) Apply 3 filter
  • 4 (93473) Apply 4 filter
  • 6 (46553) Apply 6 filter
  • 5 (36684) Apply 5 filter
  • 8 (82) Apply 8 filter
  • 9 (76) Apply 9 filter
  • 7 (72) Apply 7 filter
  • 11 (67) Apply 11 filter
  • 10 (58) Apply 10 filter
  • 12 (50) Apply 12 filter

HiPlex Channel

  • T1 (85058) Apply T1 filter
  • T10 (85051) Apply T10 filter
  • T12 (85050) Apply T12 filter
  • T11 (85039) Apply T11 filter
  • T9 (82563) Apply T9 filter
  • T8 (82560) Apply T8 filter
  • T4 (82558) Apply T4 filter
  • T2 (82557) Apply T2 filter
  • T7 (82553) Apply T7 filter
  • T3 (82546) Apply T3 filter
  • T6 (82546) Apply T6 filter
  • T5 (82540) Apply T5 filter
  • S1 (32) Apply S1 filter
  • 8 (17) Apply 8 filter
  • 1 (1) Apply 1 filter
  • 10 (1) Apply 10 filter
  • 6 (1) Apply 6 filter

Product

  • RNAscope Multiplex Fluorescent Assay (1035) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (998) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (732) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (704) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (497) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (293) Apply RNAscope 2.5 HD Brown Assay filter
  • TBD (193) Apply TBD filter
  • RNAscope 2.5 LS Assay (191) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (160) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (108) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (97) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (91) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (85) Apply RNAscope 2.5 VS Assay filter
  • Basescope (53) Apply Basescope filter
  • RNAscope HiPlex v2 assay (30) Apply RNAscope HiPlex v2 assay filter
  • miRNAscope (26) Apply miRNAscope filter
  • DNAscope HD Duplex Reagent Kit (15) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD duplex reagent kit (13) Apply RNAscope 2.5 HD duplex reagent kit filter
  • BaseScope Duplex Assay (12) Apply BaseScope Duplex Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (6) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Fluorescent Multiplex Reagent kit (5) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope ISH Probe High Risk HPV (5) Apply RNAscope ISH Probe High Risk HPV filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD Reagent Kit (4) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope HiPlex12 Reagents Kit (3) Apply RNAscope HiPlex12 Reagents Kit filter
  • DNAscope Duplex Assay (2) Apply DNAscope Duplex Assay filter
  • RNAscope 2.5 HD Assay (2) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay - RED (2) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope Multiplex Fluorescent Assay v2 (2) Apply RNAscope Multiplex Fluorescent Assay v2 filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • miRNAscope Assay Red (1) Apply miRNAscope Assay Red filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit V3 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit V3 filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Neuroscience (1849) Apply Neuroscience filter
  • Cancer (1385) Apply Cancer filter
  • Development (509) Apply Development filter
  • Inflammation (472) Apply Inflammation filter
  • Infectious Disease (410) Apply Infectious Disease filter
  • Other (406) Apply Other filter
  • Stem Cells (258) Apply Stem Cells filter
  • Covid (237) Apply Covid filter
  • Infectious (220) Apply Infectious filter
  • HPV (187) Apply HPV filter
  • lncRNA (135) Apply lncRNA filter
  • Metabolism (91) Apply Metabolism filter
  • Developmental (83) Apply Developmental filter
  • Stem cell (78) Apply Stem cell filter
  • Immunotherapy (72) Apply Immunotherapy filter
  • Other: Methods (67) Apply Other: Methods filter
  • HIV (64) Apply HIV filter
  • CGT (62) Apply CGT filter
  • Pain (62) Apply Pain filter
  • diabetes (57) Apply diabetes filter
  • LncRNAs (46) Apply LncRNAs filter
  • Aging (43) Apply Aging filter
  • Other: Heart (40) Apply Other: Heart filter
  • Reproduction (38) Apply Reproduction filter
  • Endocrinology (34) Apply Endocrinology filter
  • Other: Metabolism (32) Apply Other: Metabolism filter
  • Obesity (29) Apply Obesity filter
  • Other: Lung (29) Apply Other: Lung filter
  • Behavior (27) Apply Behavior filter
  • Kidney (27) Apply Kidney filter
  • Other: Kidney (27) Apply Other: Kidney filter
  • Alzheimer's Disease (26) Apply Alzheimer's Disease filter
  • Bone (24) Apply Bone filter
  • Stress (21) Apply Stress filter
  • Other: Zoological Disease (20) Apply Other: Zoological Disease filter
  • Regeneration (20) Apply Regeneration filter
  • Skin (20) Apply Skin filter
  • Heart (19) Apply Heart filter
  • Liver (19) Apply Liver filter
  • Lung (19) Apply Lung filter
  • Fibrosis (17) Apply Fibrosis filter
  • Other: Liver (17) Apply Other: Liver filter
  • Psychiatry (17) Apply Psychiatry filter
  • behavioral (16) Apply behavioral filter
  • Other: Endocrinology (16) Apply Other: Endocrinology filter
  • Other: Skin (16) Apply Other: Skin filter
  • Injury (15) Apply Injury filter
  • Anxiety (14) Apply Anxiety filter
  • Memory (14) Apply Memory filter
  • Reproductive Biology (14) Apply Reproductive Biology filter

Product sub type

  • Target Probes (256568) Apply Target Probes filter
  • Control Probe - Automated Leica (409) Apply Control Probe - Automated Leica filter
  • Control Probe - Automated Leica Multiplex (284) Apply Control Probe - Automated Leica Multiplex filter
  • Control Probe - Automated Leica Duplex (168) Apply Control Probe - Automated Leica Duplex filter
  • Control Probe- Manual RNAscope Multiplex (148) Apply Control Probe- Manual RNAscope Multiplex filter
  • Control Probe - Automated Ventana (143) Apply Control Probe - Automated Ventana filter
  • Control Probe - Manual RNAscope Singleplex (142) Apply Control Probe - Manual RNAscope Singleplex filter
  • Control Probe - Manual RNAscope Duplex (137) Apply Control Probe - Manual RNAscope Duplex filter
  • Control Probe (73) Apply Control Probe filter
  • Control Probe - Manual BaseScope Singleplex (51) Apply Control Probe - Manual BaseScope Singleplex filter
  • Control Probe - VS BaseScope Singleplex (41) Apply Control Probe - VS BaseScope Singleplex filter
  • Control Probe - LS BaseScope Singleplex (40) Apply Control Probe - LS BaseScope Singleplex filter
  • L-HBsAG (15) Apply L-HBsAG filter
  • Cancer (13) Apply Cancer filter
  • Automated Assay 2.5: Leica System (8) Apply Automated Assay 2.5: Leica System filter
  • Control Probe- Manual BaseScope Duplex (8) Apply Control Probe- Manual BaseScope Duplex filter
  • 1765 (8) Apply 1765 filter
  • 1379 (8) Apply 1379 filter
  • 2184 (8) Apply 2184 filter
  • 38322 (8) Apply 38322 filter
  • Manual Assay 2.5: Pretreatment Reagents (5) Apply Manual Assay 2.5: Pretreatment Reagents filter
  • Controls: Manual Probes (5) Apply Controls: Manual Probes filter
  • Control Probe- Manual RNAscope HiPlex (5) Apply Control Probe- Manual RNAscope HiPlex filter
  • Manual Assay RNAscope Brown (4) Apply Manual Assay RNAscope Brown filter
  • Manual Assay RNAscope Duplex (4) Apply Manual Assay RNAscope Duplex filter
  • Manual Assay RNAscope Multiplex (4) Apply Manual Assay RNAscope Multiplex filter
  • Manual Assay BaseScope Red (4) Apply Manual Assay BaseScope Red filter
  • IA: Other (4) Apply IA: Other filter
  • Control Probe - Manual BaseScope Duplex (4) Apply Control Probe - Manual BaseScope Duplex filter
  • Manual Assay miRNAscope Red (4) Apply Manual Assay miRNAscope Red filter
  • Automated Assay 2.5: Ventana System (3) Apply Automated Assay 2.5: Ventana System filter
  • IA: Other Accessories (3) Apply IA: Other Accessories filter
  • Control Probe - Automated Ventana Duplex (3) Apply Control Probe - Automated Ventana Duplex filter
  • Manual Assay BaseScope Duplex (3) Apply Manual Assay BaseScope Duplex filter
  • Manual Assay RNAscope Red (2) Apply Manual Assay RNAscope Red filter
  • Controls: Control Slides (2) Apply Controls: Control Slides filter
  • Control Probe- Manual BaseScope Singleplex (2) Apply Control Probe- Manual BaseScope Singleplex filter
  • Control Probe - Manual BaseScope™Singleplex (2) Apply Control Probe - Manual BaseScope™Singleplex filter
  • Manual Assay: Accessory Reagent (1) Apply Manual Assay: Accessory Reagent filter
  • Accessory Reagent (1) Apply Accessory Reagent filter
  • Controls: Manual RNAscope Multiplex (1) Apply Controls: Manual RNAscope Multiplex filter
  • IA: HybEZ (1) Apply IA: HybEZ filter
  • Automated Assay BaseScope: LS (1) Apply Automated Assay BaseScope: LS filter
  • Automated Assay BaseScope: VS (1) Apply Automated Assay BaseScope: VS filter
  • Software: RNAscope HiPlex Image Registration (1) Apply Software: RNAscope HiPlex Image Registration filter
  • miRNAscope Automated Assay: Leica System (1) Apply miRNAscope Automated Assay: Leica System filter
  • Automated Assay: VS (1) Apply Automated Assay: VS filter
  • Control Probe - VS BaseScope™Singleplex (1) Apply Control Probe - VS BaseScope™Singleplex filter
  • Controls:2.5VS Probes (1) Apply Controls:2.5VS Probes filter
  • Control Probe - Manual RNAscope Multiplex (1) Apply Control Probe - Manual RNAscope Multiplex filter

Sample Compatibility

  • Cell pellets (49) Apply Cell pellets filter
  • FFPE (41) Apply FFPE filter
  • Fixed frozen tissue (31) Apply Fixed frozen tissue filter
  • TMA (31) Apply TMA filter
  • Adherent cells (26) Apply Adherent cells filter
  • Freshfrozen tissue (18) Apply Freshfrozen tissue filter
  • Fresh frozen tissue (13) Apply Fresh frozen tissue filter
  • Cell Cultures (12) Apply Cell Cultures filter
  • TMA(Tissue Microarray) (9) Apply TMA(Tissue Microarray) filter
  • FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells (7) Apply FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells filter
  • CTC (4) Apply CTC filter
  • PBMC's (4) Apply PBMC's filter
  • Adherent or Cultured Cells (1) Apply Adherent or Cultured Cells filter
  • Fixed frozen (1) Apply Fixed frozen filter
  • FFPE,TMA (1) Apply FFPE,TMA filter
  • Fixed frozen tissues (for chromogenic assays) (1) Apply Fixed frozen tissues (for chromogenic assays) filter

Category

  • Publications (7110) Apply Publications filter

Application

  • Cancer (139875) Apply Cancer filter
  • Neuroscience (51010) Apply Neuroscience filter
  • Cancer, Neuroscience (32227) Apply Cancer, Neuroscience filter
  • Non-coding RNA (24365) Apply Non-coding RNA filter
  • Cancer, Inflammation (16436) Apply Cancer, Inflammation filter
  • Cancer, Inflammation, Neuroscience (12591) Apply Cancer, Inflammation, Neuroscience filter
  • Inflammation (9879) Apply Inflammation filter
  • Cancer, Stem Cell (7932) Apply Cancer, Stem Cell filter
  • Cancer, Neuroscience, Stem Cell (7028) Apply Cancer, Neuroscience, Stem Cell filter
  • Cancer, Immunotherapy, Inflammation, Neuroscience, Stem Cell (6854) Apply Cancer, Immunotherapy, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Inflammation, Neuroscience, Stem Cell (5424) Apply Cancer, Inflammation, Neuroscience, Stem Cell filter
  • Immunotherapy (5368) Apply Immunotherapy filter
  • Cancer, Immunotherapy (3866) Apply Cancer, Immunotherapy filter
  • Stem Cell (3385) Apply Stem Cell filter
  • Cancer, Immunotherapy, Neuroscience, Stem Cell (3050) Apply Cancer, Immunotherapy, Neuroscience, Stem Cell filter
  • Cancer, Immunotherapy, Inflammation (2844) Apply Cancer, Immunotherapy, Inflammation filter
  • Cancer, Immunotherapy, Inflammation, Neuroscience (1878) Apply Cancer, Immunotherapy, Inflammation, Neuroscience filter
  • Cancer, Immunotherapy, Neuroscience (1786) Apply Cancer, Immunotherapy, Neuroscience filter
  • Inflammation, Neuroscience (1499) Apply Inflammation, Neuroscience filter
  • Cancer, Non-coding RNA (1142) Apply Cancer, Non-coding RNA filter
  • Cancer, Immunotherapy, Inflammation, Stem Cell (1021) Apply Cancer, Immunotherapy, Inflammation, Stem Cell filter
  • Cancer,Neuroscience (940) Apply Cancer,Neuroscience filter
  • Cancer,Inflammation (777) Apply Cancer,Inflammation filter
  • Cancer, Inflammation, Stem Cell (594) Apply Cancer, Inflammation, Stem Cell filter
  • Immunotherapy, Inflammation (560) Apply Immunotherapy, Inflammation filter
  • Cancer,Inflammation,Neuroscience (424) Apply Cancer,Inflammation,Neuroscience filter
  • Cancer,Neuroscience,Stem Cell (317) Apply Cancer,Neuroscience,Stem Cell filter
  • Cancer, Immunotherapy, Stem Cell (295) Apply Cancer, Immunotherapy, Stem Cell filter
  • Cancer,Inflammation,Neuroscience,Stem Cell (259) Apply Cancer,Inflammation,Neuroscience,Stem Cell filter
  • Cancer,Stem Cell (237) Apply Cancer,Stem Cell filter
  • Cancer, Neuroscience, Neuroscience (221) Apply Cancer, Neuroscience, Neuroscience filter
  • Cancer,Immunotherapy,Inflammation,Neuroscience,Stem Cell (211) Apply Cancer,Immunotherapy,Inflammation,Neuroscience,Stem Cell filter
  • Cancer,Immunotherapy (206) Apply Cancer,Immunotherapy filter
  • Cancer,Immunotherapy,Inflammation (130) Apply Cancer,Immunotherapy,Inflammation filter
  • Neuroscience, Neuroscience (119) Apply Neuroscience, Neuroscience filter
  • Cancer,Immunotherapy,Neuroscience (113) Apply Cancer,Immunotherapy,Neuroscience filter
  • L glycoprotein (112) Apply L glycoprotein filter
  • Immunotherapy, Neuroscience (99) Apply Immunotherapy, Neuroscience filter
  • Cancer,Immunotherapy,Inflammation,Neuroscience (82) Apply Cancer,Immunotherapy,Inflammation,Neuroscience filter
  • Cancer,Immunotherapy,Neuroscience,Stem Cell (80) Apply Cancer,Immunotherapy,Neuroscience,Stem Cell filter
  • Immunotherapy,Inflammation (51) Apply Immunotherapy,Inflammation filter
  • Cancer,Non-coding RNA (48) Apply Cancer,Non-coding RNA filter
  • 4863 (41) Apply 4863 filter
  • Cancer, Neuroscience, Non-coding RNA (35) Apply Cancer, Neuroscience, Non-coding RNA filter
  • Inflammation,Neuroscience (33) Apply Inflammation,Neuroscience filter
  • HAdVC_gp16,HAdVCgp31 (32) Apply HAdVC_gp16,HAdVCgp31 filter
  • Cancer, Inflammation, Neuroscience, Non-coding RNA (31) Apply Cancer, Inflammation, Neuroscience, Non-coding RNA filter
  • Cancer,Immunotherapy,Inflammation,Stem Cell (30) Apply Cancer,Immunotherapy,Inflammation,Stem Cell filter
  • Inflammation, Non-coding RNA (30) Apply Inflammation, Non-coding RNA filter
  • Neuroscience, Non-coding RNA (29) Apply Neuroscience, Non-coding RNA filter
Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis

Nat Med.

2018 Nov 12

Falcão AM, van Bruggen D, Marques S, Meijer M, Jäkel S, Agirre E, Samudyata, Floriddia EM, Vanichkina DP, Ffrench-Constant C, Williams A, Guerreiro-Cacais AO, Castelo-Branco G.
PMID: 30420755 | DOI: 10.1038/s41591-018-0236-y

Multiple sclerosis (MS) is characterized by an immune system attack targeting myelin, which is produced by oligodendrocytes (OLs). We performed single-cell transcriptomic analysis of OL lineage cells from the spinal cord of mice induced with experimental autoimmune encephalomyelitis (EAE), which mimics several aspects of MS. We found unique OLs and OL precursor cells (OPCs) in EAE and uncovered several genes specifically alternatively spliced in these cells. Surprisingly, EAE-specific OL lineage populations expressed genes involved in antigen processing and presentation via major histocompatibility complex class I and II (MHC-I and -II), and in immunoprotection, suggesting alternative functions of these cells in a disease context. Importantly, we found that disease-specific oligodendroglia are also present in human MS brains and that a substantial number of genes known to be susceptibility genes for MS, so far mainly associated with immune cells, are expressed in the OL lineage cells. Finally, we demonstrate that OPCs can phagocytose and that MHC-II-expressing OPCs can activate memory and effector CD4-positive T cells. Our results suggest that OLs and OPCs are not passive targets but instead active immunomodulators in MS. The disease-specific OL lineage cells, for which we identify several biomarkers, may represent novel direct targets for immunomodulatory therapeutic approaches in MS.

The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness.

Nat Immunol.

2018 Nov 12

Melandri D, Zlatareva I, Chaleil RAG, Dart RJ, Chancellor A, Nussbaumer O, Polyakova O, Roberts NA, Wesch D, Kabelitz D, Irving PM, John S, Mansour S, Bates PA, Vantourout P, Hayday AC.
PMID: 30420626 | DOI: 10.1038/s41590-018-0253-5

T lymphocytes expressing γδ T cell antigen receptors (TCRs) comprise evolutionarily conserved cells with paradoxical features. On the one hand, clonally expanded γδ T cells with unique specificities typify adaptive immunity. Conversely, large compartments of γδTCR+intraepithelial lymphocytes (γδ IELs) exhibit limited TCR diversity and effect rapid, innate-like tissue surveillance. The development of several γδ IEL compartments depends on epithelial expression of genes encoding butyrophilin-like (Btnl (mouse) or BTNL (human)) members of the B7 superfamily of T cell co-stimulators. Here we found that responsiveness to Btnl or BTNL proteins was mediated by germline-encoded motifs within the cognate TCR variable γ-chains (Vγ chains) of mouse and human γδ IELs. This was in contrast to diverse antigen recognition by clonally restricted complementarity-determining regions CDR1-CDR3 of the same γδTCRs. Hence, the γδTCR intrinsically combines innate immunity and adaptive immunity by using spatially distinct regions to discriminate non-clonal agonist-selecting elements from clone-specific ligands. The broader implications for antigen-receptor biology are considered.

Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist

Sci Transl Med.

2018 Nov 14

Buckley ST, Bækdal TA, Vegge A, Maarbjerg SJ, Pyke C, Ahnfelt-Rønne J, Madsen KG, Schéele SG, Alanentalo T, Kirk RK, Pedersen BL, Skyggebjerg RB, Benie AJ, Strauss HM, Wahlund PO, Bjerregaard S, Farkas E, Fekete C, Søndergaard FL, Borregaard J, Hartoft-Nielsen ML, Knudsen LB.
PMID: 30429357 | DOI: 10.1126/scitranslmed.aar7047

Oral administration of therapeutic peptides is hindered by poor absorption across the gastrointestinal barrier and extensive degradation by proteolytic enzymes. Here, we investigated the absorption of orally delivered semaglutide, a glucagon-like peptide-1 analog, coformulated with the absorption enhancer sodium N-[8-(2-hydroxybenzoyl) aminocaprylate] (SNAC) in a tablet. In contrast to intestinal absorption usually seen with small molecules, clinical and preclinical dog studies revealed that absorption of semaglutide takes place in the stomach, is confined to an area in close proximity to the tablet surface, and requires coformulation with SNAC. SNAC protects against enzymatic degradation via local buffering actions and only transiently enhances absorption. The mechanism of absorption is shown to be compound specific, transcellular, and without any evidence of effect on tight junctions. These data have implications for understanding how highly efficacious and specific therapeutic peptides could be transformed from injectable to tablet-based oral therapies.

Genetic deletion of vesicular glutamate transporter in dopamine neurons increases vulnerability to MPTP-induced neurotoxicity in mice

Proc Natl Acad Sci U S A.

2018 Nov 15

Shen H, Marino RAM, McDevitt RA, Bi GH, Chen K, Madeo G, Lee PT, Liang Y, De Biase LM, Su TP, Xi ZX, Bonci A.
PMID: 30442663 | DOI: 10.1073/pnas.1800886115

A subset of midbrain dopamine (DA) neurons express vesicular glutamate transporter 2 (VgluT2), which facilitates synaptic vesicle loading of glutamate. Recent studies indicate that such expression can modulate DA-dependent reward behaviors, but little is known about functional consequences of DA neuron VgluT2 expression in neurodegenerative diseases like Parkinson's disease (PD). Here, we report that selective deletion of VgluT2 in DA neurons in conditional VgluT2-KO (VgluT2-cKO) mice abolished glutamate release from DA neurons, reduced their expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB), and exacerbated the pathological effects of exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, viral rescue of VgluT2 expression in DA neurons of VglutT2-cKO mice restored BDNF/TrkB expression and attenuated MPTP-induced DA neuron loss and locomotor impairment. Together, these findings indicate that VgluT2 expression in DA neurons is neuroprotective. Genetic or environmental factors causing reduced expression or function of VgluT2 in DA neurons may place some individuals at increased risk for DA neuron degeneration. Therefore, maintaining physiological expression and function of VgluT2 in DA neurons may represent a valid molecular target for the development of preventive therapeutic interventions for PD.

Enhancement of Sensitivity to Chemo/Radiation Therapy by Using miR-15b against DCLK1 in Colorectal Cancer

Stem Cell Reports

2018 Nov 15

Ji D, Zhan T, Li M, Yao Y, Jia J, Yi H, Qiao M, Xia J, Zhang Z, Ding H, Song C, Han Y, Gu J.
PMID: - | DOI: 10.1016/j.stemcr.2018.10.015

Chemo-/radiotherapy resistance is the main cause accounting for most treatment failure in colorectal cancer (CRC). Tumor-initiating cells (TICs) are the culprit leading to CRC chemo-/radiotherapy resistance. The underlying regulation mechanism of TICs in CRC remains unclear. Here we discovered that miR-15b expression positively correlated with therapeutic outcome in CRC. Expression of miR-15b in pretreatment biopsy tissue samples predicted tumor regression grade (TRG) in rectal cancer patients after receiving neoadjuvant radiotherapy (nRT). Expression of miR-15b in post-nRT tissue samples was associated with therapeutic outcome. DCLK1 was identified as the direct target gene for miR-15b and its suppression was associated with self-renewal and tumorigenic properties of DCLK1+ TICs. We identified B lymphoma Mo-MLV insertion region l homolog (BMI1) as a downstream target regulated by miR-15b/DCLK1 signaling. Thus, miR-15b may serve as a valuable marker for prognosis and therapeutic outcome prediction. DCLK1 could be a potential therapeutic target to overcome chemo-/radioresistance in CRC.

A Brainstem-Spinal Circuit Controlling Nocifensive Behavior

Neuron

2018 Nov 15

Barik A, Thompson JH, Seltzer M, Ghitani N, Chesler AT.
PMID: - | DOI: 10.1016/j.neuron.2018.10.037

Response to danger needs to be rapid and appropriate. In humans, nocifensive behaviors often precede conscious pain perception. Much is known about local spinal cord circuits for simple reflexive responses, but the mechanisms underlying more complex behaviors remain poorly understood. We now describe a brainstem circuit that controls escape responses to select noxious stimuli. Tracing experiments characterized a highly interconnected excitatory circuit involving the dorsal spinal cord, parabrachial nucleus (PBNl), and reticular formation (MdD). A combination of chemogenetic, optogenetic, and genetic ablation approaches revealed that PBNl Tac1 neurons are activated by noxious stimuli and trigger robust escape responses to heat through connections to the MdD. Remarkably, MdD Tac1 neurons receive excitatory input from the PBN and target both the spinal cord and PBN; activation of these neurons phenocopies the behavioral effects of PBNl Tac1neuron stimulation. These findings identify a substrate for controlling appropriate behavioral responses to painful stimuli.

Single-cell reconstruction of the early maternal–fetal interface in humans

Nature.

2018 Nov 14

Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, Stephenson E, Polański K, Goncalves A, Gardner L, Holmqvist S, Henriksson J, Zou A, Sharkey AM, Millar B, Innes B, Wood L, Wilbrey-Clark A, Payne RP, Ivarsson MA, Lisgo S, Filby A, Rowitch DH, Bulmer JN, Wright GJ, Stubbington MJT, Haniffa M, Moffett A, Teichmann SA.
PMID: 30429548 | DOI: 10.1038/s41586-018-0698-6

During early human pregnancy the uterine mucosa transforms into the decidua, into which the fetal placenta implants and where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblast-decidual interactions underlie common diseases of pregnancy, including pre-eclampsia and stillbirth. Here we profile the transcriptomes of about 70,000 single cells from first-trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals subsets of perivascular and stromal cells that are located in distinct decidual layers. There are three major subsets of decidual natural killer cells that have distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. Our data identify many regulatory interactions that prevent harmful innate or adaptive immune responses in this environment. Our single-cell atlas of the maternal-fetal interface reveals the cellular organization of the decidua and placenta, and the interactions that are critical for placentation and reproductive success.

NUAK2 is a critical YAP target in liver cancer

Nat Commun.

2018 Nov 16

Yuan WC, Pepe-Mooney B, Galli GG, Dill MT, Huang HAT, Hao M, Wang Y, Liang H, Calogero RA, Camargo FD.
PMID: 30446657 | DOI: 10.1038/s41467-018-07394-5

The Hippo-YAP signaling pathway is a critical regulator of proliferation, apoptosis, and cell fate. The main downstream effector of this pathway, YAP, has been shown to be misregulated in human cancer and has emerged as an attractive target for therapeutics. A significant insufficiency in our understanding of the pathway is the identity of transcriptional targets of YAP that drive its potent growth phenotypes. Here, using liver cancer as a model, we identify NUAK2 as an essential mediator of YAP-driven hepatomegaly and tumorigenesis in vivo. By evaluating several human cancer cell lines we determine that NUAK2 is selectively required for YAP-driven growth. Mechanistically, we found that NUAK2 participates in a feedback loop to maximize YAP activity via promotion of actin polymerization and myosin activity. Additionally, pharmacological inactivation of NUAK2 suppresses YAP-dependent cancer cell proliferation and liver overgrowth. Importantly, our work here identifies a specific, potent, and actionable target for YAP-driven malignancies.

The atypical chemokine receptor 2 limits progressive fibrosis after acute ischemic kidney injury

Am J Pathol.

2018 Nov 16

Lux M, Blaut A, Eltrich N, Bideak A, Müller MB, Hoppe JM, Gröne HJ, Locati M, Vielhauer V.
PMID: 30448408 | DOI: 10.1016/j.ajpath.2018.09.016

Following renal ischemia-reperfusion injury (IRI) resolution of inflammation allows tubular regeneration, whereas ongoing inflammatory injury mediated by infiltrating leukocytes leads to nephron loss and renal fibrosis, typical hallmarks of chronic kidney disease. The atypical chemokine receptor 2 (ACKR2) is a chemokine decoy receptor, that binds and scavenges inflammatory CC-chemokines and reduces local leukocyte accumulation. We hypothesized that ACKR2 limits leukocyte infiltration, inflammation, and fibrotic tissue remodeling after renal IRI, thus preventing progression to chronic kidney disease. Compared to wild-type, Ackr2 deficiency increased CC chemokine ligand 2 levels in tumor necrosis factor-stimulated tubulointerstitial tissue in vitro. In Ackr2-deficient mice with early IRI one or five days after transient renal pedicle clamping tubular injury was similar to wild-type, although accumulation of mononuclear phagocytes increased in postischemic Ackr2-/-kidneys. Regarding long-term outcomes, Ackr2-/- kidneys displayed more tubular injury five weeks after IRI, which was associated with persistently increased renal infiltrates of mononuclear phagocytes, T cells, Ly6Chigh inflammatory macrophages, and inflammation. Moreover, Ackr2 deficiency resulted in substantially aggravated renal fibrosis in Ackr2-/- kidneys five weeks after IRI, as revealed by increased expression of matrix molecules, renal accumulation of αSMA+ myofibroblasts, and bone marrow-derived fibrocytes. ACKR2 plays an important role in limiting persistent inflammation, tubular loss, and renal fibrosis after ischemic acute kidney injury, and thus can prevent progression to chronic renal disease.

Food Perception Primes Hepatic ER Homeostasis via Melanocortin-Dependent Control of mTOR Activation

Cell.

2018 Nov 15

Brandt C, Nolte H, Henschke S, Engström Ruud L, Awazawa M, Morgan DA, Gabel P, Sprenger HG, Hess ME, Günther S, Langer T, Rahmouni K, Fenselau H, Krüger M, Brüning JC.
PMID: 30445039 | DOI: 10.1016/j.cell.2018.10.015

Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis.

Distinct Compartmentalization of the Chemokines CXCL1 and CXCL2 and the Atypical Receptor ACKR1 Determine Discrete Stages of Neutrophil Diapedesis

Immunity.

2018 Nov 13

Girbl T, Lenn T, Perez L, Rolas L, Barkaway A, Thiriot A, del Fresno C, Lynam E, Hub E, Thelen M, Graham G, Alon R, Sancho D, von Andrian UH, Voisin MB, Rot A, Nourshargh S.
PMID: 30446388 | DOI: 10.1016/j.immuni.2018.09.018

Neutrophils require directional cues to navigate through the complex structure of venular walls and into inflamed tissues. Here we applied confocal intravital microscopy to analyze neutrophil emigration in cytokine-stimulated mouse cremaster muscles. We identified differential and non-redundant roles for the chemokines CXCL1 and CXCL2, governed by their distinct cellular sources. CXCL1 was produced mainly by TNF-stimulated endothelial cells (ECs) and pericytes and supported luminal and sub-EC neutrophil crawling. Conversely, neutrophils were the main producers of CXCL2, and this chemokine was critical for correct breaching of endothelial junctions. This pro-migratory activity of CXCL2 depended on the atypical chemokine receptor 1 (ACKR1), which is enriched within endothelial junctions. Transmigrating neutrophils promoted a self-guided migration response through EC junctions, creating a junctional chemokine "depot" in the form of ACKR1-presented CXCL2 that enabled efficient unidirectional luminal-to-abluminal migration. Thus, CXCL1 and CXCL2 act in a sequential manner to guide neutrophils through venular walls as governed by their distinct cellular sources.

Acquisition of WNT Pathway Gene Alterations Coincides With the Transition From Precursor Polyps to Traditional Serrated Adenomas.

Am J Surg Pathol.

2018 Aug 31

Hashimoto T, Ogawa R, Yoshida H, Taniguchi H, Kojima M, Saito Y, Sekine S.
PMID: 30179900 | DOI: 10.1097/PAS.0000000000001149

Colorectal traditional serrated adenomas (TSAs) are often associated with precursor polyps, including hyperplastic polyps and sessile serrated adenoma/polyps. To elucidate the molecular mechanisms involved in the progression from precursor polyps to TSAs, the present study analyzed 15 precursor polyp-associated TSAs harboring WNT pathway gene mutations. Laser microdissection-based sequencing analysis showed that BRAF or KRAS mutations were shared between TSA and precursor polyps in all lesions. In contrast, the statuses of WNT pathway gene mutations were different between the 2 components. In 8 lesions, RNF43, APC, or CTNNB1 mutations, were exclusively present in TSA. RNF43 mutations were shared between the TSA and precursor components in 3 lesions; however, they were heterozygous in the precursor polyps whereas homozygous in the TSA. In 4 lesions with PTPRK-RSPO3 fusions, RNA in situ hybridization demonstrated that overexpression of RSPO3, reflecting PTPRK-RSPO3 fusion transcripts, was restricted to TSA components. Consistent with the results of the genetic and in situ hybridization analyses, nuclear β-catenin accumulation and MYC overexpression were restricted to the TSA component in 13 and 12 lesions, respectively. These findings indicate that the WNT pathway gene alterations are acquired during the progression from the precursor polyps to TSAs and that the activation of the WNT pathway plays a critical role in the development of TSA rather than their progression to high-grade lesions.

Pages

  • « first
  • ‹ previous
  • …
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?