Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for TDTOMATO

ACD can configure probes for the various manual and automated assays for TDTOMATO for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

Your search for "tdTomato" returned results. Search for our Top genes LGR5, vglut2, gad67, brca1

    Refine Probe List

    Content for comparison

    Gene

    • tdTomato (45) Apply tdTomato filter
    • Sst (7) Apply Sst filter
    • Gad1 (4) Apply Gad1 filter
    • egfp (4) Apply egfp filter
    • PVALB (4) Apply PVALB filter
    • DRD2 (3) Apply DRD2 filter
    • GLP1R (3) Apply GLP1R filter
    • SLC32A1 (3) Apply SLC32A1 filter
    • Oxtr (3) Apply Oxtr filter
    • Npy (3) Apply Npy filter
    • Gad2 (3) Apply Gad2 filter
    • Trpv1 (3) Apply Trpv1 filter
    • Vip (3) Apply Vip filter
    • Piezo2 (2) Apply Piezo2 filter
    • CCKAR (2) Apply CCKAR filter
    • CALCA (2) Apply CALCA filter
    • CCK (2) Apply CCK filter
    • TH (2) Apply TH filter
    • DRD1 (2) Apply DRD1 filter
    • FOS (2) Apply FOS filter
    • Drd1a (2) Apply Drd1a filter
    • TAC1 (2) Apply TAC1 filter
    • Penk (2) Apply Penk filter
    • Reln (2) Apply Reln filter
    • Crh (2) Apply Crh filter
    • Slc6a5 (2) Apply Slc6a5 filter
    • Slc17a6 (2) Apply Slc17a6 filter
    • Npy2r (2) Apply Npy2r filter
    • Slc6a3 (2) Apply Slc6a3 filter
    • NPPB (2) Apply NPPB filter
    • Nts (2) Apply Nts filter
    • Slc17a7 (2) Apply Slc17a7 filter
    • Gal (1) Apply Gal filter
    • Dbh (1) Apply Dbh filter
    • Rbfox3 (1) Apply Rbfox3 filter
    • LHX2 (1) Apply LHX2 filter
    • NTRK2 (1) Apply NTRK2 filter
    • Pou3f3 (1) Apply Pou3f3 filter
    • Nrg1 (1) Apply Nrg1 filter
    • FN1 (1) Apply FN1 filter
    • NPAS1 (1) Apply NPAS1 filter
    • GCG (1) Apply GCG filter
    • GFAP (1) Apply GFAP filter
    • GLI1 (1) Apply GLI1 filter
    • Scn10a (1) Apply Scn10a filter
    • LYPD1 (1) Apply LYPD1 filter
    • Tph2 (1) Apply Tph2 filter
    • Aldh1l1 (1) Apply Aldh1l1 filter
    • P2ry1 (1) Apply P2ry1 filter
    • OPRK1 (1) Apply OPRK1 filter

    Product

    • RNAscope Fluorescent Multiplex Assay (22) Apply RNAscope Fluorescent Multiplex Assay filter
    • RNAscope Multiplex Fluorescent Assay (18) Apply RNAscope Multiplex Fluorescent Assay filter
    • RNAscope (2) Apply RNAscope filter
    • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
    • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
    • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter

    Research area

    • (-) Remove Neuroscience filter Neuroscience (48)
    • Metabolism (2) Apply Metabolism filter
    • CGT (1) Apply CGT filter
    • CRISPR/Cas9 gene editing (1) Apply CRISPR/Cas9 gene editing filter
    • Development (1) Apply Development filter
    • Endocrinology (1) Apply Endocrinology filter
    • Epilepsy (1) Apply Epilepsy filter
    • Grooming behavior dysfunction (1) Apply Grooming behavior dysfunction filter
    • Itching (1) Apply Itching filter
    • Memory (1) Apply Memory filter
    • OCD (1) Apply OCD filter
    • Oxytosin (1) Apply Oxytosin filter
    • Pain (1) Apply Pain filter
    • Psychiatric Disorders (1) Apply Psychiatric Disorders filter
    • Social Behavior (1) Apply Social Behavior filter

    Category

    • Publications (48) Apply Publications filter
    Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell Classes

    Cell.

    2018 Apr 10

    Cembrowski MS, Phillips MG, DiLisio SF, Shields BC, Winnubst J, Chandrashekar J, Bas E, Spruston N.
    PMID: 29681453 | DOI: 10.1016/j.cell.2018.03.031

    The mammalian hippocampus, comprised of serially connected subfields, participates in diverse behavioral and cognitive functions. It has been postulated that parallel circuitry embedded within hippocampal subfields may underlie such functional diversity. We sought to identify, delineate, and manipulate this putatively parallel architecture in the dorsal subiculum, the primary output subfield of the dorsal hippocampus. Population and single-cell RNA-seq revealed that the subiculum can be divided into two spatially adjacent subregions associated with prominent differences in pyramidal cell gene expression. Pyramidal cells occupying these two regions differed in their long-range inputs, local wiring, projection targets, and electrophysiological properties. Leveraging gene-expression differences across these regions, we use genetically restricted neuronal silencing to show that these regions differentially contribute to spatial working memory. This work provides a coherent molecular-, cellular-, circuit-, and behavioral-level demonstration that the hippocampus embeds structurally and functionally dissociable streams within its serial architecture.

    A neural network for intermale aggression to establish social hierarchy

    Nature Neuroscience

    2018 May 25

    Stagkourakis S, Spigolon G, Williams P, Protzmann J, Fisone G, Broberger C.
    PMID: - | DOI: 10.1038/s41593-018-0153-x

    Intermale aggression is used to establish social rank. Several neuronal populations have been implicated in aggression, but the circuit mechanisms that shape this innate behavior and coordinate its different components (including attack execution and reward) remain elusive. We show that dopamine transporter-expressing neurons in the hypothalamic ventral premammillary nucleus (PMvDAT neurons) organize goal-oriented aggression in male mice. Activation of PMvDATneurons triggers attack behavior; silencing these neurons interrupts attacks. Regenerative PMvDAT membrane conductances interacting with recurrent and reciprocal excitation explain how a brief trigger can elicit a long-lasting response (hysteresis). PMvDAT projections to the ventrolateral part of the ventromedial hypothalamic and the supramammillary nuclei control attack execution and aggression reward, respectively. Brief manipulation of PMvDAT activity switched the dominance relationship between males, an effect persisting for weeks. These results identify a network structure anchored in PMvDAT neurons that organizes aggressive behavior and, as a consequence, determines intermale hierarchy.

    Kappa Opioid Receptor Distribution and Function in Primary Afferents.

    Neuron.

    2018 Sep 19

    Snyder LM, Chiang MC, Loeza-Alcocer E, Omori Y, Hachisuka J, Sheahan TD, Gale JR, Adelman PC, Sypek EI, Fulton SA, Friedman RL, Wright MC, Duque MG, Lee YS, Hu Z, Huang H, Cai X, Meerschaert KA, Nagarajan V, Hirai T, Scherrer G, Kaplan DH, Porreca F, Davi
    PMID: 30236284 | DOI: 10.1016/j.neuron.2018.08.044

    Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.

    Learning-Related Plasticity in Dendrite-Targeting Layer 1 Interneurons

    Neuron

    2018 Sep 27

    Abs E, Poorthuis RB, Apelblat D, Muhammad K, Pardi MB, Enke L, Kushinsky D, Pu DL, Eizinger MF, Conzelmann KK, Spiegel I, Letzkus JJ.
    PMID: - | DOI: 10.1016/j.neuron.2018.09.001

    A wealth of data has elucidated the mechanisms by which sensory inputs are encoded in the neocortex, but how these processes are regulated by the behavioral relevance of sensory information is less understood. Here, we focus on neocortical layer 1 (L1), a key location for processing of such top-down information. Using Neuron-Derived Neurotrophic Factor(NDNF) as a selective marker of L1 interneurons (INs) and in vivo 2-photon calcium imaging, electrophysiology, viral tracing, optogenetics, and associative memory, we find that L1 NDNF-INs mediate a prolonged form of inhibition in distal pyramidal neuron dendrites that correlates with the strength of the memory trace. Conversely, inhibition from Martinotti cells remains unchanged after conditioning but in turn tightly controls sensory responses in NDNF-INs. These results define a genetically addressable form of dendritic inhibition that is highly experience dependent and indicate that in addition to disinhibition, salient stimuli are encoded at elevated levels of distal dendritic inhibition.

    Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake.

    Nat Neurosci. 2018 Nov;21(11):1530-1540.

    2018 Oct 22

    Piñol RA, Zahler SH, Li C, Saha A, Tan BK, Škop V, Gavrilova O, Xiao C, Krashes MJ, Reitman ML.
    PMID: 30349101 | DOI: 10.1038/s41593-018-0249-3

    Bombesin-like receptor 3 (BRS3) is an orphan G-protein-coupled receptor that regulates energy homeostasis and heart rate. We report that acute activation of Brs3-expressing neurons in the dorsomedial hypothalamus (DMHBrs3) increased body temperature (Tb), brown adipose tissue temperature, energy expenditure, heart rate, and blood pressure, with no effect on food intake or physical activity. Conversely, activation of Brs3 neurons in the paraventricular nucleus of the hypothalamus had no effect on Tb or energy expenditure, but suppressed food intake. Inhibition of DMHBrs3 neurons decreased Tb and energy expenditure, suggesting a necessary role in Tb regulation. We found that the preoptic area provides major input (excitatory and inhibitory) to DMHBrs3 neurons. Optogenetic stimulation of DMHBrs3 projections to the raphe pallidus increased Tb. Thus, DMHBrs3→raphe pallidus neurons regulate Tb, energy expenditure, and heart rate, and Brs3 neurons in the paraventricular nucleus of the hypothalamus regulate food intake. Brs3 expression is a useful marker for delineating energy metabolism regulatory circuitry.
    Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity.

    Cell Rep.

    2018 Oct 09

    Timper K, Paeger L, Sánchez-Lasheras C, Varela L, Jais A, Nolte H, Vogt MC, Hausen AC, Heilinger C, Evers N, Pospisilik JA, Penninger JM, Taylor EB, Horvath TL, Kloppenburg P, Brüning JC.
    PMID: 30304679 | DOI: 10.1016/j.celrep.2018.09.034

    Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.

    Functional Access to Neuron Subclasses in Rodent and Primate Forebrain.

    Cell Rep.

    2019 Mar 05

    Mehta P, Kreeger L, Wylie DC, Pattadkal JJ, Lusignan T, Davis MJ, Turi GF, Li WK, Whitmire MP, Chen Y, Kajs BL, Seidemann E, Priebe NJ, Losonczy A, Zemelman BV.
    PMID: 30840900 | DOI: 10.1016/j.celrep.2019.02.011

    Viral vectors enable foreign proteins to be expressed in brains of non-genetic species, including non-human primates. However, viruses targeting specific neuron classes have proved elusive. Here we describe viral promoters and strategies for accessing GABAergic interneurons and their molecularly defined subsets in the rodent and primate. Using a set intersection approach, which relies on two co-active promoters, we can restrict heterologous protein expression to cortical and hippocampal somatostatin-positive and parvalbumin-positive interneurons. With an orthogonal set difference method, we can enrich for subclasses of neuropeptide-Y-positive GABAergic interneurons by effectively subtracting the expression pattern of one promoter from that of another. These methods harness the complexity of gene expression patterns in the brain and significantly expand the number of genetically tractable neuron classes across mammals.

    Anoctamin 4 channel currents activate glucose-inhibited neurons in the mouse ventromedial hypothalamus during hypoglycemia

    The Journal of clinical investigation

    2023 Jun 01

    Tu, L;Bean, JC;He, Y;Liu, H;Yu, M;Liu, H;Zhang, N;Yin, N;Han, J;Scarcelli, NA;Conde, KM;Wang, M;Li, Y;Feng, B;Gao, P;Cai, ZL;Fukuda, M;Xue, M;Tong, Q;Yang, Y;Liao, L;Xu, J;Wang, C;He, Y;Xu, Y;
    PMID: 37261917 | DOI: 10.1172/JCI163391

    Although glucose is the basic fuel essential to maintain the viability and functions of all cells, some neurons, namely glucose-inhibited (GI) neurons, paradoxically increase their firing activities when glucose falls and are inhibited by high glucose. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here we showed that currents mediated by anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose. Genetic disruption of the Ano4 gene in VMH neurons reduced blood glucose and impaired counterregulatory responses during hypoglycemia in mice. Activation of VMHAno4 neurons increased food intake and blood glucose, while chronic inhibition of VMHAno4 neurons ameliorated hyperglycemia in a type 1 diabetic mouse model. Finally, we showed that VMHAno4 neurons represent a unique orexigenic VMH population and transmit a positive valence, while stimulation of non-Ano4 neurons in the VMH suppress feeding and transmit a negative valence. Together, our results indicate that the Ano4 channel and VMHAno4 neurons are potential therapeutic targets for human diseases with abnormal feeding behavior or glucose imbalance.
    Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex

    Cell

    2023 Apr 27

    Munz, M;Bharioke, A;Kosche, G;Moreno-Juan, V;Brignall, A;Rodrigues, TM;Graff-Meyer, A;Ulmer, T;Haeuselmann, S;Pavlinic, D;Ledergerber, N;Gross-Scherf, B;Rózsa, B;Krol, J;Picelli, S;Cowan, CS;Roska, B;
    PMID: 37071993 | DOI: 10.1016/j.cell.2023.03.025

    Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.5, they form a multi-layered circuit motif, composed of only embryonic near-projecting-type neurons. By E17.5, this transitions to a second motif involving all three embryonic types, analogous to the three adult layer 5 types. In vivo patch clamp recordings and two-photon calcium imaging of embryonic Rbp4-Cre neurons reveal active somas and neurites, tetrodotoxin-sensitive voltage-gated conductances, and functional glutamatergic synapses, from E14.5 onwards. Embryonic Rbp4-Cre neurons strongly express autism-associated genes and perturbing these genes interferes with the switch between the two motifs. Hence, pyramidal neurons form active, transient, multi-layered pyramidal-to-pyramidal circuits at the inception of neocortex, and studying these circuits could yield insights into the etiology of autism.
    Synaptic Targets of Glycinergic Neurons in Laminae I-III of the Spinal Dorsal Horn

    International journal of molecular sciences

    2023 Apr 08

    Miranda, CO;Hegedüs, K;Kis, G;Antal, M;
    PMID: 37108107 | DOI: 10.3390/ijms24086943

    A great deal of evidence supports the inevitable importance of spinal glycinergic inhibition in the development of chronic pain conditions. However, it remains unclear how glycinergic neurons contribute to the formation of spinal neural circuits underlying pain-related information processing. Thus, we intended to explore the synaptic targets of spinal glycinergic neurons in the pain processing region (laminae I-III) of the spinal dorsal horn by combining transgenic technology with immunocytochemistry and in situ hybridization accompanied by light and electron microscopy. First, our results suggest that, in addition to neurons in laminae I-III, glycinergic neurons with cell bodies in lamina IV may contribute substantially to spinal pain processing. On the one hand, we show that glycine transporter 2 immunostained glycinergic axon terminals target almost all types of excitatory and inhibitory interneurons identified by their neuronal markers in laminae I-III. Thus, glycinergic postsynaptic inhibition, including glycinergic inhibition of inhibitory interneurons, must be a common functional mechanism of spinal pain processing. On the other hand, our results demonstrate that glycine transporter 2 containing axon terminals target only specific subsets of axon terminals in laminae I-III, including nonpeptidergic nociceptive C fibers binding IB4 and nonnociceptive myelinated A fibers immunoreactive for type 1 vesicular glutamate transporter, indicating that glycinergic presynaptic inhibition may be important for targeting functionally specific subpopulations of primary afferent inputs.
    The basolateral amygdala to lateral septum circuit is critical for regulating social novelty in mice

    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology

    2022 Nov 12

    Rodriguez, LA;Kim, SH;Page, SC;Nguyen, CV;Pattie, EA;Hallock, HL;Valerino, J;Maynard, KR;Jaffe, AE;Martinowich, K;
    PMID: 36369482 | DOI: 10.1038/s41386-022-01487-y

    The lateral septum (LS) is a basal forebrain GABAergic region that is implicated in social novelty. However, the neural circuits and cell signaling pathways that converge on the LS to mediate social behaviors aren't well understood. Multiple lines of evidence suggest that signaling of brain-derived neurotrophic factor (BDNF) through its receptor TrkB plays important roles in social behavior. BDNF is not locally produced in LS, but we demonstrate that nearly all LS GABAergic neurons express TrkB. Local TrkB knock-down in LS neurons decreased social novelty recognition and reduced recruitment of neural activity in LS neurons in response to social novelty. Since BDNF is not synthesized in LS, we investigated which inputs to LS could serve as potential BDNF sources for controlling social novelty recognition. We demonstrate that selectively ablating inputs to LS from the basolateral amygdala (BLA), but not from ventral CA1 (vCA1), impairs social novelty recognition. Moreover, depleting BDNF selectively in BLA-LS projection neurons phenocopied the decrease in social novelty recognition caused by either local LS TrkB knockdown or ablation of BLA-LS inputs. These data support the hypothesis that BLA-LS projection neurons serve as a critical source of BDNF for activating TrkB signaling in LS neurons to control social novelty recognition.
    Inhibitory Kcnip2 neurons of the spinal dorsal horn control behavioral sensitivity to environmental cold

    Neuron

    2022 Oct 26

    Albisetti, GW;Ganley, RP;Pietrafesa, F;Werynska, K;Magalhaes de Sousa, M;Sipione, R;Scheurer, L;Bösl, MR;Pelczar, P;Wildner, H;Zeilhofer, HU;
    PMID: 36323322 | DOI: 10.1016/j.neuron.2022.10.008

    Proper sensing of ambient temperature is of utmost importance for the survival of euthermic animals, including humans. While considerable progress has been made in our understanding of temperature sensors and transduction mechanisms, the higher-order neural circuits processing such information are still only incompletely understood. Using intersectional genetics in combination with circuit tracing and functional neuron manipulation, we identified Kcnip2-expressing inhibitory (Kcnip2GlyT2) interneurons of the mouse spinal dorsal horn as critical elements of a neural circuit that tunes sensitivity to cold. Diphtheria toxin-mediated ablation of these neurons increased cold sensitivity without affecting responses to other somatosensory modalities, while their chemogenetic activation reduced cold and also heat sensitivity. We also show that Kcnip2GlyT2 neurons become activated preferentially upon exposure to cold temperatures and subsequently inhibit spinal nociceptive output neurons that project to the lateral parabrachial nucleus. Our results thus identify a hitherto unknown spinal circuit that tunes cold sensitivity.

    Pages

    • « first
    • ‹ previous
    • 1
    • 2
    • 3
    • 4
    • next ›
    • last »
    X
    Description
    sense
    Example: Hs-LAG3-sense
    Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
    Intron#
    Example: Mm-Htt-intron2
    Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
    Pool/Pan
    Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
    A mixture of multiple probe sets targeting multiple genes or transcripts
    No-XSp
    Example: Hs-PDGFB-No-XMm
    Does not cross detect with the species (Sp)
    XSp
    Example: Rn-Pde9a-XMm
    designed to cross detect with the species (Sp)
    O#
    Example: Mm-Islr-O1
    Alternative design targeting different regions of the same transcript or isoforms
    CDS
    Example: Hs-SLC31A-CDS
    Probe targets the protein-coding sequence only
    EnEmProbe targets exons n and m
    En-EmProbe targets region from exon n to exon m
    Retired Nomenclature
    tvn
    Example: Hs-LEPR-tv1
    Designed to target transcript variant n
    ORF
    Example: Hs-ACVRL1-ORF
    Probe targets open reading frame
    UTR
    Example: Hs-HTT-UTR-C3
    Probe targets the untranslated region (non-protein-coding region) only
    5UTR
    Example: Hs-GNRHR-5UTR
    Probe targets the 5' untranslated region only
    3UTR
    Example: Rn-Npy1r-3UTR
    Probe targets the 3' untranslated region only
    Pan
    Example: Pool
    A mixture of multiple probe sets targeting multiple genes or transcripts

    Enabling research, drug development (CDx) and diagnostics

    Contact Us
    • Toll-free in the US and Canada
    • +1877 576-3636
    • 
    • 
    • 
    Company
    • Overview
    • Leadership
    • Careers
    • Distributors
    • Quality
    • News & Events
    • Webinars
    • Patents
    Products
    • RNAscope or BaseScope
    • Target Probes
    • Controls
    • Manual assays
    • Automated Assays
    • Accessories
    • Software
    • How to Order
    Research
    • Popular Applications
    • Cancer
    • Viral
    • Pathways
    • Neuroscience
    • Other Applications
    • RNA & Protein
    • Customer Innovations
    • Animal Models
    Technology
    • Overview
    • RNA Detection
    • Spotlight Interviews
    • Publications & Guides
    Assay Services
    • Our Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    • Your Benefits
    • How to Order
    Diagnostics
    • Diagnostics
    • Companion Diagnostics
    Support
    • Getting started
    • Contact Support
    • Troubleshooting Guide
    • FAQs
    • Manuals, SDS & Inserts
    • Downloads
    • Webinars
    • Training Videos

    Visit Bio-Techne and its other brands

    • bio-technie
    • protein
    • bio-spacific
    • rd
    • novus
    • tocris
    © 2025 Advanced Cell Diagnostics, Inc.
    • Terms and Conditions of Sale
    • Privacy Policy
    • Security
    • Email Preferences
    • 
    • 
    • 

    For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

     

    Contact Us / Request a Quote
    Download Manuals
    Request a PAS Project Consultation
    Order online at
    bio-techne.com
    OK
    X
    Contact Us

    Complete one of the three forms below and we will get back to you.

    For Quote Requests, please provide more details in the Contact Sales form below

    • Contact Sales
    • Contact Support
    • Contact Services
    • Offices

    Advanced Cell Diagnostics

    Our new headquarters office starting May 2016:

    7707 Gateway Blvd.  
    Newark, CA 94560
    Toll Free: 1 (877) 576-3636
    Phone: (510) 576-8800
    Fax: (510) 576-8798

     

    Bio-Techne

    19 Barton Lane  
    Abingdon Science Park
    Abingdon
    OX14 3NB
    United Kingdom
    Phone 2: +44 1235 529449
    Fax: +44 1235 533420

     

    Advanced Cell Diagnostics China

    20F, Tower 3,
    Raffles City Changning Office,
    1193 Changning Road, Shanghai 200051

    021-52293200
    info.cn@bio-techne.com
    Web: www.acdbio.com/cn

    For general information: Info.ACD@bio-techne.com
    For place an order: order.ACD@bio-techne.com
    For product support: support.ACD@bio-techne.com
    For career opportunities: hr.ACD@bio-techne.com

    See Distributors
    ×

    You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

    OK Cancel
    Need help?

    How can we help you?