European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology
Begni, V;Pisano, I;Marizzoni, M;Marchisella, F;Creutzberg, KC;De Rosa, F;Cattaneo, A;Gruca, P;Litwa, E;Papp, M;Riva, MA;
PMID: 35830759 | DOI: 10.1016/j.euroneuro.2022.06.005
Chronic stress represents a major contributor for the development of mental illness. This study aimed to investigate how animals exposed to chronic mild stress (CMS) responded to an acute stress (AS), as a vulnerability's challenge, and to establish the potential effects of the antipsychotic drug lurasidone on such mechanisms. Adult male Wistar rats were exposed or not (controls) to a CMS paradigm for 7 weeks. Starting from the end of week 2, animals were randomized to receive vehicle or lurasidone for 5 weeks. Sucrose intake was used to measure anhedonia. At the end, half of the animals were exposed to an acute stress before sacrifice. Exposure to CMS produced a significant reduction in sucrose consumption, whereas lurasidone progressively normalized such alteration. We found that exposure to AS produced an upregulation of Brain derived neurotrophic factor (Bdnf) in the prefrontal cortex of controls animals. This response was impaired in CMS rats and restored by lurasidone treatment. While in control animals, AS-induced increase of Bdnf mRNA levels was specific for Parvalbumin cells, CMS rats treated with lurasidone show a significant upregulation of Bdnf in pyramidal cells. Furthermore, when investigating the activation of different brain regions, CMS rats showed an impairment in the global response to the acute stressor, that was largely restored by lurasidone treatment. Our results suggest that lurasidone treatment in CMS rats may regulate specific circuits and mechanisms, which will ultimately contribute to boost resilience under stressful challenges.
Exposure to Prenatal Stress Is Associated With an Excitatory/Inhibitory Imbalance in Rat Prefrontal Cortex and Amygdala and an Increased Risk for Emotional Dysregulation
Frontiers in cell and developmental biology
Marchisella, F;Creutzberg, KC;Begni, V;Sanson, A;Wearick-Silva, LE;Tractenberg, SG;Orso, R;Kestering-Ferreira, É;Grassi-Oliveira, R;Riva, MA;
PMID: 34141707 | DOI: 10.3389/fcell.2021.653384
Epidemiological studies have shown that environmental insults and maternal stress during pregnancy increase the risk of several psychiatric disorders in the offspring. Converging lines of evidence from humans, as well as from rodent models, suggest that prenatal stress (PNS) interferes with fetal development, ultimately determining changes in brain maturation and function that may lead to the onset of neuropsychiatric disorders. From a molecular standpoint, transcriptional alterations are thought to play a major role in this context and may contribute to the behavioral phenotype by shifting the expression of genes related to excitatory and inhibitory (E/I) transmission balance. Nevertheless, the exact neurophysiological mechanisms underlying the enhanced vulnerability to psychopathology following PNS exposure are not well understood. In the present study, we used a model of maternal stress in rats to investigate the distal effects of PNS on the expression of genes related to glutamatergic and GABAergic neurotransmissions. We inspected two critical brain regions involved in emotion regulation, namely, the prefrontal cortex (PFC) and the amygdala (AMY), which we show to relate with the mild behavioral effects detected in adult rat offspring. We observed that PNS exposure promotes E/I imbalance in the PFC of adult males only, by dysregulating the expression of glutamatergic-related genes. Moreover, such an effect is accompanied by increased expression of the activity-dependent synaptic modulator gene Npas4 specifically in the PFC parvalbumin (PV)-positive interneurons, suggesting an altered regulation of synapse formation promoting higher PV-dependent inhibitory transmission and increased overall circuit inhibition in the PFC of males. In the AMY, PNS more evidently affects the transcription of GABAergic-related genes, shifting the balance toward inhibition. Collectively, our findings suggest that the E/I dysregulation of the PFC-to-AMY transmission may be a long-term signature of PNS and may contribute to increase the risk for mood disorder upon further stress.
Khatamsaz, E;Stoller, F;Zach, S;Kätzel, D;Hengerer, B;
| DOI: 10.1016/j.nsa.2022.100659
Background: The Psychiatric Ratings using Intermediate Stratified Markers (PRISM) project focuses on understanding the biological background behind social deficits, specifically social withdrawal irrespective of diagnosis. Reduced connectional integrity in fiber tracts such as Forceps minor has been indicated in low social individuals as a part of the PRISM 1 project. These fiber tracts are also involved in the Default Mode Network (DMN) and the Social network and they share a common region, the Orbitofrontal Cortex (OFC).This study aims to back-translate the clinical data to preclinical studies and associate social dysfunction in rodents with DMN and particularly OFC. Parvalbumin interneurons are targeted based on their fundamental role in maintaining Excitatory Inhibitory (E/I) balance in brain circuits. Numerous studies indicate behavioral impairment in rodents by increasing excitability of PV+ interneurons. Methods: As an initial step, we characterized the population of projection neurons within OFCs by combining Cholera Toxin subunit B (CTB) as a retrograde tracer and In situ hybridization (ISH) technique (RNAscope). We identified the expression of mRNAs marking glutamatergic (vesicular glutamate transporter [VGLUT]) and GABAergic (vesicular GABA transporter [VGAT]) by using Slc17a7 and Slc32a1 probes. CTB was injected unilaterally in the left OFC (AP=2.68, ML=-0.8, DV=2.2). after 10 days mice were perfused and RNAscope assay was performed using RNAscope™ Multiplex Fluorescent kit (ACDBio™).For inducing hypoactivation of OFC, we introduced an excitatory DREADD (designer receptors exclusively activated by designer drugs) to PV+ interneurons by using a PV-Cre mouse line. Mice were injected either AAV-hSyn-DIO-hM3D(Gq)-mCherry virus (n=12) or AAV-hSyn-DIO-mCherry (n=12) as control virus. As a novel behavioral tool, Radiofrequency identification (RFID)-assisted SocialScan combined with video tracking has been used, which provides a long-term observation of social behaviors. Monitoring the behavior in groups of four was performed for 7 days in total. After two pre-application days, Clozapine-N-oxide (CNO) was injected three times on consecutive days intraperitoneally (5mg/kg) as an activator of hM3D. application days were followed by two post-application days. Mice were perfused and RNAscope was performed to visualize c-fos mRNA expression as neuronal activity marker, and PV expression to validate our virus and mouse line efficacy. Results: ISH results indicated VGLUT1 has the highest expression within projection neurons (81%). 6% are VGAT+ and only 3% are both VGLUT1/VGAT positive neurons. Despite demonstrating the GABAergic projection neurons as a minority, their crucial role as local interneurons to moderate the excitatory neurons is indisputable.In in vivo study, CNO administration induced social dysregulation in DREAAD mice, demonstrated by a reduction in different social parameters (approach, fight, etc.) in terms of duration. During post-application days, DREAAD mice showed significantly higher social interaction in all definedparameters (Social Approach: p=0.0009, unpaired T-test) and locomotion as a non-social parameter (p= 0.0207).Results from ISH support our hypothesis that DREADD activation of PV+ interneurons is followed by high expression of neuronal activity markers in these targeted interneurons. Conclusion: This study indicates that manipulation of PV+ interneurons using artificially engineered activating protein receptors, generates in effect activation of these interneurons, and this manipulation particularly in OFC could cause social dysfunction in mice.